
Chapter 7 - Automatic General Game Tuning

Diego Perez-Liebana

1 Introduction

Automatic Game Tuning refers to an autonomous process by which parameters,
entities or other characteristics of games are adjusted to achieve a determined goal.
This goal could be to favour a specific type of player, create games that are more
balanced in the case of two-or-more player games, or in order to provide a determined
game playing experience to the players. The fact that is automatic allows to save some
valuable time to game designers and testers, who otherwise need to manually change
and play-test the different versions of the game. Furthermore, it can serve as a way
of finding new variants of a game that no human had thought before.

As mentioned previously, the fact that the Video Game Description Language
(VGDL) is the backbone of GVGAI, allows for a fast tweak-and-test process for game
tuning. This chapter studies how VGDL has been modified to facilitate automatic
game tuning, by including variables in the language that can be modified from the
engine. With this, the GVGAI framework allows not only to create content (levels
or rules) for games, as seen in the previous chapter, but also to work on VGDL
game spaces. This parameterization of GVGAI games (see Section 2 in this chapter)
exposes a game space for algorithms to search in; this is, the collection of all possible
game variants that the values of the different parameters facilitate.

One possibility to navigate these game spaces is to use optimization techniques.
Given an objective (or fitness function), the optimization method explores values for
the exposed parameters progressively in order to find games that fulfill better the
desired criteria. In this chapter, we propose, in Section 3, to use the N-Tuple Bandit
Evolutionary Algorithm (NTBEA) for this purpose. We then focus on automatic
game tuning with two different objectives. First, to show how a game can be tweaked
to favour one player over another one (see Section 3.2). Secondly, in Section 4, we
modify several games to offer different experiences to the player - concretely in the
way and time score opportunities are presented along the game.

1.1 Previous Work

One of the first examples of research on game spaces that can be found in the
literature [1] defined a parameter space for the game Flappy Bird. In this game, the

1

General Video Game Artificial Intelligence

player has two actions to execute at every frame (tap or no tap). Each tap makes the
player (a bird) to flap its wings and gain some height, while no tapping makes it fall
due to the force of gravity. The player must travel to the right of the screen, going
through a series of gaps between pipes without touching them. The game ends when
the bird touches one of these pipes. Evolutionary algorithms were used to explore
the values of the game parameters and the different games that resulted of changing
them. Examples of these parameters are the pipe lengths and widths, the (horizontal)
distance between pipes, player size, force of gravity, etc. The authors identified four
different settings, each one providing a unique gameplay experience. A follow-up
work aimed at finding different difficulty levels [2] showed that all playable games
are clustered in a certain part of the search space.

In a similar way, Liu et. al. [4] proposed game parameterezation for the two-player
game Space Battle, in which two ships move in real-time in a 2-dimensional and
wrapped space while shooting at each other. The authors used a Random Mutation
Hill Climber (RMHC) to evolve game parameters such as the maximum ship and
missile speeds, cooldown time (between shootings), missile cost, ship radius and
thrust power. The objective of this work is to find game variants in which an MCTS
player would defeat Rotate And Shoot (RAS), which is a very simple but powerful
strategy in this game. Using UCB1 to select which parameter RMHC should mutate
next resulted to be an efficient way to explore the search space and find games with
an interesting skill-depth.

A later work by Kunanusont et. al. [3] used a novel Evolutionary Algorithm,
the N-Tuple Bandit EA (or NTBEA [5]) to explore an even larger space in a new
version of Space Battle, which counted on 30 in-game parameters. The aim was to
find games that would favour skilled players against weak ones, using RAS and
two GVGAI agents for training: MCTS (strongest player) and One-Step Lookahead
(1SLA, the weakest). The fitness of each game was calculated as the minimum gap
of performance between the pairs MCTS-RAS and RAS-1SLA.

2 GVGAI Parameterization

The first step required to explore game spaces in VGDL games is to adapt the
language to account for game parameterization. In order to do this, we enhanced
VGDL in two ways: First, defining a new section for the language (ParameterSet)
that would define the types and values of all the parameters that can exist in a VGDL
game. Then, allowing the possibility of defining variables as values for the properties
listed in the SpriteSet, InteractionSet and TerminationSet.

2

7 - Automatic General Game Tuning

1 GameSpace s q u a r e s i z e =32
2 S p r i t e S e t
3 background > Immovable img=oryx / space1 hidden=True
4 base > Immovable img=oryx / p lanet
5 avatar > FlakAvatar stype=sam img=oryx / spacesh ip1
6 m i s s i l e > M i s s i l e
7 sam > o r i e n t a t i o n=UP speed=SSPEED s i n g l e t o n=IS SAM SINGLE img=

oryx / b u l l e t 1
8 bomb > o r i e n t a t i o n=DOWN speed=BSPEED img=oryx / b u l l e t 2
9 a l i e n > Bomber stype=bomb prob=APROB cooldown=ACOOL speed=ASPEED

10 al i enGreen > img=oryx / a l i e n 3
11 a l i enB lue > img=oryx / a l i e n 1
12 p o r t a l > i n v i s i b l e=True hidden=True
13 porta lS low > SpawnPoint stype=a l i enB lue cooldown=PCOOL t o t a l=

PTOTAL
14
15 ParameterSet
16 #{Name} > { va lue s (min : inc : max) /(bool) } { d e s c s t r i n g } { [opt] va l }
17
18 SSPEED > va lue s = 0 . 1 : 0 . 1 : 1 . 0 s t r i n g=Sam Speed value =0.5

19 BSPEED > va lue s = 0 . 1 : 0 . 1 : 1 . 0 s t r i n g=Bomb Speed
20 APROB > va lue s = 0 . 0 1 : 0 . 0 5 : 0 . 7 5 s t r i n g=Al ien Bomb Probabi l i ty
21
22 ACOOL > va lue s =1:1:5 s t r i n g=Alien Cooldown
23 ASPEED > va lue s = 0 . 5 : 0 . 1 : 1 . 0 s t r i n g=Al ien Speed
24 PCOOL > va lue s =1:1:5 s t r i n g=Alien Porta l Cooldown
25 PTOTAL > va lue s =10:5:60 s t r i n g=A l i e n P o r t a l T o t a l
26
27 IS SAM SINGLE > va lue s=True : Fa l se s t r i n g=Is Sam Sing l e ton

Listing 1: VGDL Definition of the game Aliens enhanced with a
ParameterSet. InteractionSet and LevelMapping are unchanged with respect
to the default VGDL code for this game (see Chapter 2).

Listing 1 shows an example of a VGDL game, Alens, that has been parameterized.
In this case, only the SpriteSet has been modified (see the default VGDL code for
this game in Chapter 2) and a ParameterSet has been added to define the new
parameters. Finally, it is important to notice that the first keyword of the VGDL
game description file must be GameSpace1

Each line of the ParameterSet (lines 15 to 27) define a new parameter that can
be used in the other sets of the description. Each one of these parameters can have
up to four different fields.

1 Note that, in a fully defined VGDL game, this is BasicGame.

3

General Video Game Artificial Intelligence

– Name: this is the variable name, a single word that must be used in the other
sets to reference this parameter.

– Values: this field defines the possible values this parameter may take. Three
types are allowed and they are implicitly defined when providing the values, two
numeric (int and double) and a boolean.

• Numeric: values are indicated in a tuple of three numbers, a : b : c, where
a is the minimum, b the increment and c the maximum. For instance, line 19
defines the parameter BSPEED, which can take values as defined in 0.1 : 0.1 :
1.0, where the minimum value is 0.1, the maximum 1.0 and the increment
is 0.1. This determines that all possible values for this parameter are 10:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0.

• Boolean: these parameters are always defined as True : False and can take
only these two values. An example of a boolean parameter can be seen in
line 27.

– Descriptive String: an easy to read expression that describes (better than the
variable name) what the parameter does.

– Value: this is an optional field that allows the designed to initialize a value for the
parameter before running the game (see line 18 for an example). If this is present,
the values field is ignored. The objective of this field is to facilitate play-testing
with the parameters.

Once the ParameterSet is defined, it is possible to add variables to the other
sets. Listing 1 shows a few examples of this. For instance, line 9, which defines
the properties of the aliens (enemies) of this game, uses three variables defined in
the ParameterSet : APROB (which determines the probabilty of an alien dropping a
bomb at each frame), ACOOL (which decides the number of consecutive frames while
the aliens do not execute any action) and ASPEED (speed of the aliens, measured
in grid cells per movement action).

The framework permits creating games from game space definitions by providing
an array of integers for the values of the parameters. Listing 2 shows an example in
GVGAI to initialize game spaces. Each one of the values in the array (i) maps one
parameter, so the value of this parameter will be lowerbound + i ∗ increment. The
order of the elements of this array is the same as the order listed when using the
function printDimensions(), from the object DesignMachine.

4

7 - Automatic General Game Tuning

[t!]

1 //Reads VGDL and loads game with parameters .
2 S t r ing game = ” game f i lename . txt ” ;
3 DesignMachine dm = new DesignMachine (game) ;
4
5 // 1) Creat ing a new i n s t a n t i a t i o n o f the game space at random :
6 i n t [] i n d i v i d u a l = new i n t [dm. getNumDimensions ()] ;
7 f o r (i n t i = 0 ; i < i n d i v i d u a l . l ength ; ++i)
8 i n d i v i d u a l [i] = new Random() . next Int (dm. getDimSize (i)) ;
9

10 //We can pr in t a r epor t with the parameters and va lue s :
11 dm. pr intVa lues (i n d i v i d u a l) ;
12
13 // Play the game (a human in c o n t r o l)
14 dm. playGame (ind iv idua l , game , l e v e l 1 , seed) ;
15
16
17 // 2) Creat ing a new i n d i v i d u a l with s p e c i f i c va lue s :
18 // Each parameter w i l l take a value = ” lower bound + i ∗ increment ”
19 i n d i v i d u a l = new i n t [] { 2 , 2 , 0 , 4 , 8 , 3 , 9 , 4} ;
20
21 dm. playGame (ind iv idua l , game , l e v e l 1 , seed) ;

Listing 2: GVGAI Code example (in Java) game space initialization.

For the game space of Aliens defined above, the call to printDimensions() pro-
vides the following output, which also include the size of the space of possible in-
stantiations of this game and of each dimension:

1 Ind i v i dua l l ength : 8
2 Value S(D) Range Desc r ip t i on
3 0 .3 10 0 . 1 : 0 . 1 : 1 . 0 Bomb Speed
4 0 .7 6 0 . 5 : 0 . 1 : 1 . 0 Al ien Speed
5 f a l s e 2 True : Fa l se I s Sam Sing l e ton
6 5 5 1 : 1 : 5 Alien Cooldown
7 50 11 10 : 5 : 6 0 A l i en Por t a l To ta l
8 0 .4 10 0 . 1 : 0 . 1 : 1 . 0 Sam Speed
9 0 .46 15 0 . 0 1 : 0 . 0 5 : 0 . 7 5 Al ien Bomb Probabi l i ty

10 5 5 1 : 1 : 5 Al ien Porta l Cooldown
11 Search Space S i z e : 4 .950E6

Listing 3: Game Space for the game aliens, as indicated in the GVGAI output.
Columns are, from left to right: Final value, Dimension size, Range of values and
Comprehensive description.

This feature of GVGAI is available for both single- and two-player games. In the
rest of this chapter, we show two different use cases in which evolution is used to
find different instantiations according to certain search criteria.

5

General Video Game Artificial Intelligence

3 Evolving Games for Different Agents

In this section, we propose the following problem: given two agents with different
skill capabilities, is it possible to find instances of one game (Aliens) in which one
agent performs better than the other? And viceversa?

First, we analyze a new Evolutionary Algorithm, the N-Tuple Banding Evolution-
ary Algorithm [6], which will be used to search the space of possible Alien games.
Secondly, we will observe the different results that can be achieved with this method
in this environment.

3.1 The N-Tuple Bandit Evolutionary Algorithm

The N-Tuple Bandit Evolutionary Algorithm (NTBEA) [6] is an optimization algo-
rithm specially suited for large search spaces in which the evaluation of each one of
its points is computationally very expensive. NTBEA counts on an N-Tuple system
that captures the statistics of the inherent model and the combination of the values
of its discrete parameters.

NTBEA is formed of three different parts: a bandit landscape model, an evo-
lutionary algorithm and a fitness evaluator subject to noise. In principle, we can
assume that the execution of querying the landscape model is negligible in compar-
ison with evaluating a potential solution. Figure 1 depicts the three components of
the algorithm.

Fig. 1: Key components of NTBEA.

NTBEA works as follows. Search starts from a single point in the search space,
chosen uniformly at random. We refer to this point as the current point. This point
is evaluated once in the target problem, using the noisy evaluator. There is no need
for resampling (even in noisy problems) directly. The bandits built in the model may
require to re-evaluate a candidate solution in future steps. Note that the algorithm
also works for noise-free problems, but without loss of generality it assumes the
harder case (where the problem is noisy).

The current point and its fitness value is stored in the bandit landscape model
(for brevity, referred to as the model from now on). Then, the algorithm advances to

6

7 - Automatic General Game Tuning

select the next current point. In order to do this, the model is then searched around
the neighborhood of the current point. This neighborhood is defined by a number of
neighbours and the proximity distribution to the current point. This distribution is
controlled directly by the mutation operator. The next point will be such point in the
neighbourhood with the highest estimated UCB1 value. This process continues until
a the termination condition is met (i.e. evaluation budget or some other criterion).

Estimating UCB Values: an N -Tuple Approach One of the key parts of this
algorithm is how to estimate the UCB values when sampling a large search space.
With large, we assume that it is impossible to evaluate all possible points in the
solution space, because the number of fitness evaluation allowed by the budget is
smaller than the search space size. The relationship between the points sampled and
their neighbours in the search space needs then to be modeled properly.

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a) + ε

}
(1)

UCB1, shown again in Equation 1, combines a exploitation term (Q(s, a) on the
left) and an exploration expression (on the right) balanced by a control parameter
C (higher values lead to a more exploratory search and lower values produce more
greedy selections). N(s) is the total number of times a bandit has been played, while
N(s, a) indicates the number of times the arm a has been played.

For NTBEA, each dimension of the search space is modelled as an independent
multi-armed bandit and each arm represents a possible value. The standard UCB
formula does not contain ε, in order to guarantee that all arms are pulled at least once.
In our case, this would be impractical, as it would force an exhaustive exploration of
the search space. ε in Equation 1 relaxes this requirement.

Additionally, combinations of arms are also modeled as super-bandits. In a d-
dimensional search space where each dimension has n possible values, the largest
super-bandit (which combines all dimensions) would have nd arms. Rather than
using such large bandit, we aggregate over all the N -Tuples in the N -Tuple System
model. Let N be the N -Tuple indexing function such that Nj(x) indexes the jth

bandit for a point x in the search space. The aggregate UCB value for solution point
x is computed as the unweighted average, as defined in Equation 2, where m indicates
the total number of bandits defined.

vUCB(x) =
1

m

m∑
j=1

UCBNj(x), (2)

7

General Video Game Artificial Intelligence

The N-Tuple bandit system sub-samples the dimensions of a d-dimensional search
space with a number of N -tuples. N can takes any values from 1 to d, reaching 2d

bandits if all tuples are considered. Each N-Tuple is assigned a look-up table (LUT)
that stores statistical summaries of the values associated with it. These statistics con-
tain the number of samples, its sum and the sum of the square of the fitness of these
samples. These values allow for the computation of the mean, standard deviation
and standard error fore each N-Tuple. These measurements not only provide a great
insight into the system that is being modeled, but they also provide all components
required for Equations 1 and 2.

NTBEA is described in Algorithm 1. First, it chooses a random point in the
serach space (current point). Each one of these points is represented with a vector
of integers, where each element is an index to a value in that dimension. There is no
restriction towards the type of value it refers to (i.e. integer, double, boolean, etc.).

Given an evaluation budget, the following steps are repeated until the search
finishes.

1. A (noisy) fitness evaluation of the current point is made, to then store its fitness
in the N-Tuple Fitness Landscape Model. This is the value given to that solution
point (lines 6 and 7 in Algorithm 1).

2. From the current solution, a set of unique neighbours is generated using the
mutation operator. This represents the population of the current iteration (line 8).

3. The fitness landscape model calculates the (ucb) value for each one of these
neighbours, using Equations 1 and 2. The new current solution is set as the
neighbour with the highest UCB value.

Once the budget has been exhausted, NTBEA recommends a point among the
evaluated solutions and their neighbours, in which each dimension is set to the value
with maximal approximate value defined in (2).

An Illustrative Example We take a 5-dimensional space and model it using five
1-tuples and one 5-tuple. In this model, we have four sample points (three of them
unique) and their fitness as shown in Table 2 (left). Given these fitness values, the
first 1-tuple (i.e. corresponding to the first dimension) has a LUT entry with two
entries with a mean of 1 for LUT [0 ∗ ∗ ∗ ∗] and 2

3
for LUT [1 ∗ ∗ ∗ ∗]. The 5-tuple

has three non-empty entries: LUT [12340] has a mean of 0.5, and LUT [11111] and
LUT [00110] both have means of 1. Some other statistics (only for the non-null table
entries) that can be found in the system are shown in Table 2 (right). Note that, as
indicated above, other measurements such as the standard deviation and standard
error are also available for each N-tuple entry.

8

7 - Automatic General Game Tuning

Algorithm 1 The N-Tuple Bandit Evolutionary Algorithm. This description out-
lines the simplest case (1 current point), but a population-based version is also pos-
sible.

Input: n ∈ N+: number of neighbors
Input: p ∈ (0, 1): mutation probability
Input: flipOnce ∈ {true, false} indicates if flip at least once or not during mutation
Oputput: LModel: landscape model of the problem.

1: function NTBEA(n, p, flipOnce)
2: t = 0 Counter for fitness evaluations
3: LModel← Initialise the fitness landscape model
4: current← random point ∈ S
5: while t < nbEvals do
6: value← fitness(current)
7: add < current, value > to LModel
8: Population← Neighbors(LModel, current, n, p, flipOnce)
9: current← arg maxx∈Population vUCB(x)

10: t← t + 1

11: return LModel
12:
13: function Neighbors(model, x, n, p, flipOnce)
14: Population← {} . Initialise empty set
15: d← |x| . Get the dimension
16: for k ∈ {1, . . . , n} do
17: neighbor ← x
18: i← 0
19: if flipOnce then
20: i← randomly selected from {1, 2, . . . , d}
21: for j ∈ {1, . . . , d} do
22: if i == j or RAND < p then
23: Randomly mutate value of neighborj

24: Add neighbor to Population

25: return (Population)

3.2 Variants of Aliens for Agents with Different Look-aheads

This section shows an example of usage of NTBEA for tuning parameters of the
game Aliens. First, a Game Space is created for this game in VGDL, as described
above. The resultant search space is described in Table 1, including the total search
space.

The objective set for this experiment is to find games where an agent A achieves a
victory rate as highest as possible, while an agent B loses as many games as possible.
Both agents are based on the Monte Carlo Tree Search (MCTS) agent distributed
with the GVGAI framework and the difference between the two resides on the depth

9

General Video Game Artificial Intelligence

Solution fitness

[1, 2, 3, 4, 0] 1
[1, 1, 1, 1, 1] 1
[0, 0, 1, 1, 0] 1
[1, 2, 3, 4, 0] 0

N -tuple Pattern Mean Nb. of eval.

1-tuple

[0, ∗, ∗, ∗, ∗] 1 1
[1, ∗, ∗, ∗, ∗] 2

3
3

[∗, 0, ∗, ∗, ∗] 1 1
[∗, 1, ∗, ∗, ∗] 1 1
[∗, 2, ∗, ∗, ∗] 1

2
2

[∗, ∗, 1, ∗, ∗] 1 2
[∗, ∗, 3, ∗, ∗] 1

2
2

[∗, ∗, ∗, 1, ∗] 1 2
[∗, ∗, ∗, 4, ∗] 1

2
2

[∗, ∗, ∗, ∗, 0] 2
3

3
[∗, ∗, ∗, ∗, 1] 1 1

5-tuple
[0, 0, 1, 1, 0] 1 1
[1, 1, 1, 1, 1] 1 1
[1, 2, 3, 4, 0] 1

2
2

Fig. 2: Sample points and their corresponding fitness values (left) and some non-null
table entries stored in the system (right).

Name Description Possible Values Size

BSPEED Speed of the aliens’ bombs 0.1, 0.2, ..., 1.0 10

ASPEED Speed of the aliens 0.1, 0.2, ..., 1.0 10

IS SAM SINGLE Are sams (player’s bullet) singleton? True / False 2

ACOOL Cooldown for aliens’ movement 1, 2, 3, 4, 5 5

PTOTAL Number of aliens to be spawned 10, 15, 20, 25, ..., 60 11

SSPEED Speed of the avatar’s sams 0.1, 0.2, ..., 1.0 10

APROB Probability of alien dropping a bomb 0.01, 0.05, 0.1, 0.15, ..., 0.75 15

APCOOL Cooldown for alien spawning portal 1, 2, 3, 4, 5 5

Total search space size 4.95× 106

Table 1: Aliens ’ parameter set search space

of their Monte Carlo simulations. Two depths are used in this study: 20 and 5. It
is worth noting that MCTS, using depth 10 and 40ms for decision time (the same
budget has been used for these experiments), achieves 100% victories on the default
game of Aliens.

Two different experiments have been conducted.

– Experiment I: Agent A (the one whose number of victories must be maximized)
has a simulation depth dA = 20, while agent B has a maximum depth of dB = 5.

– Experiment II: dA = 5 and dB = 5.

Note that these experiments are searching for two different objectives: experiment
I favours agents with long look-aheads, while experiment II favours those with
shorter ones.

10

7 - Automatic General Game Tuning

Both agents A and B are used to evaluate all points in the search space. Each
game is played twice, one per agent. The final outcome (oA, oB ∈ {0, 1}, where 0
means a loss and 1 a win) and the final score (sA, sB) are recorded. The performance
of each agent on each game is computed as Vi = s1 × (1 + C × oi). Note that this
expression rewards agents winning the game by a factor C, which multiplies the score
obtained by the agent. The fitness of the individual (instantiation of the given game)
is defined be the logistic function shown in Equation 3.

Fitness =
1

1 + e−(VA−VB)×K (3)

where K smooths the steepness of the logistic function. Therefore, a fitness value
of 0.5 would indicate a similar performance of both agents in the game. A value close
to 1 indicates that the agent A performs much better than B and the contrary is true
for values close to 0. 10 repetitions were run for each experiment, lasting for 10000
generations each, each one with a random seed for the game kept constant during
the ran, chosen uniformly at random.

Figure 3 show the progression of the fitness as defined in Equation 3 for both
experiments. Note that these images plot the cumulative average of the fitness from
the start until the given generation. Given the noisy nature of the agents and the
exploratory component of NTBEA, individual fitness measurement is very noisy and
their plot does not offer much information.

Fig. 3: NTBEA Fitness progression on Aliens games. On the left, experiment I. On
the right, experiment II. All games played by two MCTS agents with simulation
depths 5 and 20.

11

General Video Game Artificial Intelligence

As can be seen, all fitness values average around 0.5 at the start of the runs, in
which represents games being explored for which both agents perform similarly. In
both experiments (I on the left, II on the right), all runs progressively find games in
which fitness is higher (respectively, agent A performing better than B on the left,
vice-versa on the right).

Each generation evaluates one point (with no re-sampling) of the search space. It
is therefore worth validating that the final games recommended by NTBEA have the
desired properties. In order to check this, a validation experiment has been performed
by playing 20 times each one of the recommended games (per run, thus 10 in total)
and averaging the fitness values achieved. Furthermore, for this validation games are
played with different random seeds to the ones used during their evolutionary runs.
Figure 4 shows that all evolved games achieve a greater than 0.5 fitness, which means
that all games are played better by one agent than the other.

Fig. 4: Validation of the games recommended by NTBEA after evolution. Each bar
is the average of fitness values achieved fruit of 20 evaluations of each game. On the
left, experiment I. On the right, experiment II. Games are played by MCTS with
simulation depths 5 and 20.

Finally, an extra set of games have been played in these recommended games
using different agents and an extra set of seeds for the random generators. A Rolling
Horizon Evolutionary Algorithm (RHEA, see Chapter 3) has been used with indi-
vidual lengths 5 and 20, same as used in the experiments, in order to test that the
games evolved do not only have the desired properties when playing with the agents
used during evolution. Table 2 shows the percentage of victories of each agent, the

12

7 - Automatic General Game Tuning

average score and time steps. As can be seen, the evolved games are robust to the
type of agent used to play them and the seeds used.

Agent % Victories
Average Score
(std error)

Time Steps
(std error)

Results obtained in games evolved for Experiment I

RHEA (d=20) 100 61.65 (0.92) 101.85 (4.45)

RHEA (d=5) 5 65.45 (1.17) 133.65 (1.79)

Results obtained in games evolved for Experiment II

RHEA (d=20) 0 29.05 (4.19) 98.8 (8.28)

RHEA (d=5) 100 124.7 (0.84) 344.55 (14.38)

Table 2: Test performed with RHEA agents on the games recommended by NTBEA.
First two row of results refer to those games in which longer depth is preferred
(d = 20). Last two row refer to results in games where shorter depth is preferred
(d = 5).

Examples of generated games Figure 5 shows a screenshot of one of the games
recommended for experiment I (favouring longer look-aheads). Table 4 shows the
final parameters found by NTBEA for this game.

Fig. 5: Screenshot of the game Aliens evolved for the Experiment I, where longer
look-aheads are preferred. A video of this game, played by RHEA (d = 20), can be
found at: https://www.youtube.com/watch?v=PWHGM_Bd6Jw

13

https://www.youtube.com/watch?v=PWHGM_Bd6Jw

General Video Game Artificial Intelligence

Parameter Value Parameter Value Parameter Value Parameter Value

BSPEED 0.1 ASPEED 0.8 IS SAM SINGLE True ACOOL 1

PTOTAL 25 SSPEED 0.6 APROB 0.3 APCOOL 2

Table 3: Parameters tuned by NTBEA for one of the games of Experiment I.

As can be seen, the game looks much different than the original one (see Chap-
ter 2). There are many more alien bullets on screen (note parameter BSPEED in
Table 4 is the minimum non-zero possible speed for the bullets) and with bullet be-
ing very close to each other on the y-axis, product of a relatively high probability of
shooting (APROB = 0.3). This creates a type of games where a cascade of bullets is
thrown upon the player. The only chance for the player to win the game is to destroy
all aliens quickly, before the unavoidable waterfall of bullets reaches the player first.
Precision for shooting at the enemies is needed for this, and an algorithm with a
longer look-ahead can reach the rewards available by killing aliens in its planning
horizon better than an agent with a shorter simulation depth.

Conversely, Figure 6 shows a screenshot of a game evolved for experiment II and
Table 4 the final parameter values.

Fig. 6: Screenshot of the game Aliens evolved for the Experiment II, where shorter
look-aheads are preferred. A video of this game, played by RHEA (d = 5), can be
found at: https://www.youtube.com/watch?v=t6usa_f9jig

As can be seen, the game looks again very different to previous versions of Aliens
shown in this book. In this case, the enemies move faster (ASPEED = 0.1) and they
are more separated from each other (APCOOL higher in this case than in Table 4).

14

https://www.youtube.com/watch?v=t6usa_f9jig

7 - Automatic General Game Tuning

Parameter Value Parameter Value Parameter Value Parameter Value

BSPEED 1.0 ASPEED 1.0 IS SAM SINGLE True ACOOL 2

PTOTAL 55 SSPEED 0.3 APROB 0.5 APCOOL 4

Table 4: Parameters tuned by NTBEA for one of the games of Experiment II.

Bullet speed is also higher than in the previous case, with BSPEED = 1.0 as a
parameter. The resultant game is much faster paced than the example of experiment
I but in this case, with great skill, it is possible to dodge bullets. This maneuver
is easier for an algorithm with shorter look-ahead2 and allows this type of agent to
survive long enough until the enemies reach the simulation horizon, when they can
be killed. Longer-sighted agents are typically killed by these bullets as they are less
precise on the shorter range.

We found really interesting that the same algorithm, NTBEA, is able to evolve
and create new games (with dynamics and relationships between the game parame-
ters that were never thought of before) that respond to opposed objectives in a stable
and robust (to noise and agents) way. This result opens the path to a line of research
that explores game spaces automatically by using agents to evaluate them.

4 Modelling Player Experience

In this section we describe our work on using NTBEA to tweak VGDL games with
the objective of adjusting the game experience of the players. In particular, the aim
is to modify the game parameters so the score progression that their playing agents
achieve follows a pre-determined curve.

4.1 Designing the Search Space

In the original VGDL, all sprites that are spawned from portal sprites are created at
a constant rate during the whole game. in order to enrich the space where interesting
games can exist, these portals have been modified to establish a two limits, lower
and upper, which determine when the portal is allowed to spawn sprites. These limits
are now part of the possible parameters that can be tweaked by any optimization
algorithm. It is worth noting that the original version of the games with portals are
still valid points in the search space using these limits (concretely, setting the lower
limit to 0 and the upper limit to 2000).

For this work, three games were chosen and parameterized: Defender, Waves
and Seaquest. Figure 7 shows screenshots of the three games, as in their original

2 Having shorter depths and the same budget, more certain analysis can be done of the near future events.

15

General Video Game Artificial Intelligence

implementation. In Defender, the player controls an aircraft that aims at destroying
some aliens that are bombing a city. The player can shoot missiles but requires
ammunition, which is provided via supply packs that fall from the sky. Aliens move
from their spawn points horizontally to the left and are harmless to the avatar.

In Waves, the player must again try to fight aliens but in this case the objective
is survival. Aliens are spawn from the right and move towards the player, located
initially on the left part of the screen. Aliens shoot missiles at the player which this
must avoid but that can be destroyed by the player’s own bullets. When this happens,
a shield drops that can be picked up for extra protection. Finally, Seaquest is a port
of the original game with the same name, in which the player controllers a submarine
that must rescue divers spawned at the bottom of the sea. The submarine can stay
under water for a certain amount of time before oxygen runs out, before which the
player must come to the surface or game is over. Different types of animals (whales,
sharks and piranhas) move horizontally and kill the player upon contact.

These games have been chosen due to the possibility of designing large game
spaces in them, which can provide multiple different instances of the same game.
Tables 5, 6 and 7 describe the search spaces designed for these games (respectively)
using the VGDL parameterization model shown in this chapter. All these search
spaces reach a size of 1010.

Name Description Possible Values Size

BSPEED Bomb speed 0.1, 0.3, 0.5, 0.7, 0.9 5

ASPEED Alien speed 0.2, 0.4, 0.6, 0.8, 1.0 5

SUPSPEED Supply falling speed 0.05, 0.25, 0.45 3

APROB Alien’s probability to shoot a bomb 0.01, 0.02, 0.03, 0.04, 0.05 5

SLOWPPROB Slow portal’s probability to spawn an alien 0.05, 0.1, 0.15, 0.2, 0.25 5

FASTPPROB Fast portal’s probability to spawn an alien 0.3, 0.5 2

AMPROB Supply portal’s probability to spawn a supply 0.05, 0.15, 0.25 3

ACOOLDOWN Alien’s bomb shooting cooldown 2, 4, 6, 8, 10 5

PCOOLDOWN Alien portal’s cooldown 5, 10, 15, 20 4

AMCOOLDOWN Supply portal’s cooldown 5, 10, 15, 20, 4

BLIMIT Avatar’s maximum ammo supply 5, 10, 15, 20 4

ADDSUP Amount of ammo a supply pack contains 1, 2, 3, 4, 5 5

LOSSCITY Score lost when a city is destroyed -4, -3, -2, -1 4

AREWARD Score gained when an alien is shot 1, 3, 5, 7, 9 5

DELAY The time step that all portals start spawning 0, 50, 100, 150, 200, 250, 300 7

CLOSE The time step that all portals stop spawning 350, 400, 450, 500 4

Total search space size 1.08× 1010

Table 5: Defender’s parameter set search space

16

7 - Automatic General Game Tuning

Fig. 7: Screenshots of the games, from top to bottom: Defender, Waves and Seaquest.

Selected Target Score Functions The objective of this work is to find, in the
search space of these games, particular instances of them where the players are
exposed to certain predetermined target score functions. All functions designed for
this experiment are positive-definite (f(x) > 0 for all x > 0). We have defined four
functions: linear (Equation 4, with m ∈ {0.2, 0.4, 1}), shifted sigmoid (Equation 5,

17

General Video Game Artificial Intelligence

Name Description Possible Values Size

RSPEED Rock’s speed 0.45, 0.95, 1.45, 1.95, 2.45 5

SSPEED Avatar missile’s speed 0.5, 1.0, 1.5, 2.0 4

LSPEED Laser’s speed 0.1, 0.2, 0.3, 0.4, 0.5 5

ACOOLDOWN Alien portal’s cooldown 2, 6, 10, 14 4

RCOOLDOWN Rock portal’s cooldown 2, 6, 10, 14 4

APROB Alien portal’s probability of alien spawn 0.01, 0.05 2

RPROB Rock portal’s probability to spawn a rock 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 6

PSPEED Avatar’s speed 0.5, 1.0, 1.5 3

ASPEED Alien’s speed 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 6

SLIMIT Avatar’s maximum health point 2, 4, 6, 8 , 10 5

ASPROB Alien’s probability to shoot a laser 0.005, 0.01, 0.015, 0.02 4

SPLUS
Avatar’s health increase when picking a

shield
1, 2, 3, 4, 5 5

APEN Score lost when avatar collides with alien -4, -3, -2, -1 4

LASERPEN Score lost when avatar hit by a laser -4, -3, -2, -1 4

SREWARD Score gained when an alien is shot 1, 3, 5, 7 , 9 5

DELAY Time step at which portals start spawning 0, 50, 100, 150, 200, 250, 300 7

CLOSE Time step at which portals stop spawning 350, 400, 450, 500 4

Total search space size 7.741× 1010

Table 6: Waves’ parameter set search space

with K3 ∈ {3, 12}), logarithmic (Equation 6, L = 15) and exponential (Equation 7).
Note that the last two functions require a fast increase in the score rate either at the
start or at the end of the games. These functions are plotted in section 4.2 together
with the results, for the shake of space.

f(x) = mx (4)

f(x) = 150× (
1

1 + exp(− x
30

+K3)
) (5)

f(x) = L log2 x (6)

f(x) = 2
x
70 (7)

It is important to highlight that these functions are targets, and as such they may
be impossible to achieve by a playing agent in the game space defined. However, our
objective is to use NTBEA to tune games so the recommended instances provide an
experience, as defined by the score trend, that approximate these ideal progression
curves as much as possible.

18

7 - Automatic General Game Tuning

Name Description Possible Values Size

SSPEED Shark’s speed 0.05, 0.2, 0.35, 0.5 4

WSPEED Whale’s speed 0.05, 0.2 2

PSPEED Piranha’s speed 0.05, 0.2, 0.35, 0.5 4

DSPEED Diver’s speed 0.1, 0.3, 0.5, 0.7, 0.9 5

SHPROB Shark portal’s probability of shark spawn 0.01, 0.06, 0.11, 0.16 4

WHPROB Whale portal’s probability of whale spawn 0.005, 0.025, 0.045, 0.065, 0.085 5

DHPROB
Normal diver portal’s probability of

spawn
0.005, 0.015, 0.025, 0.035, 0.045 5

OFDHPROB
Fast diver portal’s probability of diver

spawn
0.05, 0.07, 0.09 3

WSPROB Whale’s probability to spawn a piranha 0.01, 0.04, 0.07, 0.1 4

HP Avatar’s initial oxygen amount 9, 17, 25, 33 4

MHP Avatar’s maximum oxygen amount 10, 20, 30, 40 4

HPPLUS
Oxygen gained per time step at the

surface
1, 2, 3, 4 4

TIMERHPLOSS
Oxygen amount lost per time step

underwater
5, 10, 15, 20 4

WHALESCORE Score increased when a whale is shot 5, 10, 15, 20 4

DCONS
Consecutive tiles a diver can move per

step
1, 2, 3 3

CRLIMIT
Max divers the avatar can rescue in one

dive
1, 3, 5, 7 4

DELAY
The time step that all portals start

spawning
0, 50, 100, 150, 200 5

SHUTHOLE
The time step that all portals stop

spawning
200, 250, 300, 350, 400 5

Total search space size 5.892× 1010

Table 7: Seaquest’s parameter set search space

Fitness Calculation Potential solutions explored by NTBEA are evaluated using
the RHEA agent available in the GVGAI framework during evolution. Each game
played records the score at every game tick and the final outcome (win or loss).
We use a Normalized Root Mean Square Error (NRMSE) to compute the deviation
between the score obtained during the game and the target trend. Let ŝ be the vector
of scores achieved from timestep 1 to n (the last game tick), and ŷ the vector of target
scores for a given function. RMSE is calculated as shown in Equation 8, which is also
the loss function on the target.

Loss(ŝ, ŷ) = NRMSE(ŝ, ŷ) =

√∑n
i=1(ŷi − ŝi)2

n(ŷmax − ŷmin)
(8)

We then define 1−Loss(ŝ, ŷ) as the fitness function to be maximized by NTBEA.

19

General Video Game Artificial Intelligence

4.2 Evolving Games for Player Experience

Experimental setup NTBEA has been used to evolve parameters on the three
VGDL games described in the previous section: Defender, Waves and Seaquest, aim-
ing to fit the score progression of an RHEA agent to different variations of the four
target functions described above. Furthermore, an MCTS agent has been used to
validate the games finally suggested by NTBEA, playing 20 times each one of them.
In total, 21 different experiment settings, resulting of testing 7 variations of these
target functions, have been tested:

– Linear function, Equation 4, m = 0.2.
– Linear function, Equation 4, m = 0.4.
– Linear function, Equation 4, m = 1.0.
– Sigmoid function, Equation 5, K3 = 3 (shifted left).
– Sigmoid function, Equation 5, K3 = 12 (shifted right).
– Logarithmic function, Equation 6.
– Exponential function, Equation 7.

Ten runs have been performed for each one of these settings and outcomes have
been averaged to present their results. RHEA was executed using a population size of
20 with an individual length l = 10 and mutation rate 1/l. The C value for the tree
policy of the MCTS agent is set to

√
2 and the simulation depth d = 10. Both agents

count on the same value function to evaluate a state, which follows Equation 9. In
this scenario, the value would be the score of the game unless the game is over and
has been won (1000) or lost (−1000). It is important to highlight, thus, that the
agents are always aiming to maximize score. Hence, the score trend shown in a game
depends mostly on the characteristics of the game itself, with noise introduced by
the inherent stochasticity of the games and agents employed.

V (s) =

score(s), otherwise

1000, if game won in state s

−1000, if game lost in state s

(9)

Finally, C for the NTBEA bandits is also set to
√

2 and the number of neighbours
for NTBEA is established at 100.

Evolving for a linear score progression Figure 8 shows the average fitness trend
over 500 generations of NTBEA in the three games studied in this work, when using
the linear function y = 0.2x as the target score trend. In this curve (as for all the

20

7 - Automatic General Game Tuning

others), x represents the time step and y the score at time step x. For these plots, the
optimal value is 1 (as it minimizes the loss - Equation 8 - to 0). The plots represent
an average of the 10 runs performed per experimental setting, and the light blue
shaded area indicates the standard deviation of the values.

0 200 400 600 800 1000
Generation

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Fi
tn

es
s

Average fitness over all generations
Defender_Lin_0.2

Fitness

0 200 400 600 800 1000
Generation

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Fi
tn

es
s

Average fitness over all generations
Waves_Lin_0.2

Fitness

0 200 400 600 800 1000
Generation

2

1

0

1

2

Fi
tn

es
s

Average fitness over all generations
Seaquest_Lin_0.2

Fitness

Fig. 8: Average fitness throughout evolutions for y = 0.2x on the games of this study
(left to right: Defender, Waves and Seaquest.

As can be seen, the fitness progression in the three games approximates to 1,
which translates to explored points in the search space that represent games for
which the score trend that RHEA achieves is close to y = 0.2x. Fitness values seem
to stabilize at generation 1000 for all games. In Seaquest (8-right), convergence was
achieved quickly (around generation 200), while Waves stabilized a bit later (8-center,
500 generations). Defender (8-left) took more time to reach a stable fitness (albeit
with a higher standard deviation), after close to 800 generations.

Another interesting way of analyzing this progression is to plot the actual score
trend that the games achieve per generation. As that would be quite difficult to
include in a single figure, we have taken average of score trends in consecutive gener-
ations. In order to be able to see this progression, segments are created of N genera-
tions each, and an average is plotted for all of them. The value of N is adjusted per
game for a better visualization, as different games evolved at different speeds (but
N is kept constant though the experiment for all runs). If NTBEA is progressing
in the right direction, it is expected that consecutive segments approximate better
the target function. Figure 9 plots these curves per generation segment for the three
games evolved to fit y = 0.2x. Note that the red function is the target sought.

As can be observed, the first curves (blue lines) diverge considerably to from the
target progression. These are the initial game instances explored by NTBEA, where
the algorithm selects points in the search space with little to no information. See, for
instance, how in Seqauest (9, right) the first average score trend is above the target

21

General Video Game Artificial Intelligence

0 100 200 300 400 500
Steps

0

20

40

60

80

100

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Defender_Lin_0.2

gen = 0-200
gen = 200-400
gen = 400-600
gen = 600-800
gen = 800-1000
wanted

0 100 200 300 400 500
Steps

0

20

40

60

80

100

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Lin_0.2

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

0 100 200 300 400 500
Steps

0

25

50

75

100

125

150

175

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Seaquest_Lin_0.2

gen = 0-50
gen = 50-100
gen = 100-150
gen = 150-200
gen = 200-250
wanted

Fig. 9: Average score trend throughout evolution for the linear function y = 0.2x on
the games tested in this study (left to right: Defender, Waves and Seaquest).

by a significant gap. In the other games, the initial score progression lies below the
target in Waves (Figure 9 , center), and it is negative (i.e. the player loses points) in
Defender.

As the landscape model of NTBEA becomes more accurate, the individuals ex-
plored show a better performance and the progression curves approximate the target
better. In general, the black curves (last generation segment) achieves the smallest
error with respect to the target for all games and aimed trends. For all games, NT-
BEA manages to find parameter sets that are closer to the target. Furthermore, these
results are consistent for all linear functions chosen as targets.

As mentioned above, we played the suggested games with MCTS to verify that
the games suggested by NTBEA provide the desired target score trends not only for
the agent that was used during evolution (RHEA) but also for a different one. This is
analogous to the procedure done for Aliens in Section 3.2. For doing this validation,
the best individual of each run was selected and played 10 times. The score from
these games were recorded, averaged for the same parameter set, and plotted along
with others in the same evolution configuration. Figure 10 shows the score trends
of the best individuals found in all evolutionary runs for the three games. To save
space, we are only showing the plots for the target function y = x (the figures of the
other linear functions are very similar).

It is worth highlighting that most of the recommended individuals for Defender
(Figure 10, right) are games for which MCTS achieves a positive score on average
(in contrast with the initial negative score trend seen in the first generations during
evolution). The target y = mx with m = 1 seems to be, however, hard to approx-
imate in this game. in contrast, games suggested for Waves and Seaquest provide
better results, showing score trends in which the MCTS agent approximate the tar-
get progression.

22

7 - Automatic General Game Tuning

0 100 200 300 400 500
Steps

0

100

200

300

400

500

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

0 100 200 300 400 500
Steps

0

100

200

300

400

500

600

700

sc
or

e

Validation results for Waves, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

0 100 200 300 400 500
Steps

0

100

200

300

400

500

sc
or

e

Validation results for Seaquest, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

Fig. 10: Average score trend on validation for y = x on the games of this study (left
to right: Defender, Waves and Seaquest).

Fitting advanced score trends Figures 11 and 12 shows the fitness progression
and score trends when the left-shifted (respectively right-sifthed) sigmoid functions
are used as targets.

0 200 400 600 800 1000
Generation

0.0

0.2

0.4

0.6

0.8

Fi
tn

es
s

Average fitness over all generations
Waves_Sig

Fitness

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Sig

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

Fig. 11: Fitness and average score trends for the (left) shifted sigmoid function y =
150

1+exp(− x
20

+3)
in Waves.

Both figures show, on the left, the fitness progression of the NTBEA runs and,
on the right, the curve progression as depicted in generation segments. The fitness
progression suggests that the left-shifted target is more difficult to adjust that the
right-shifted one: the initial fitness of the former is worse and it reaches a constant
value of 0.5 (optimum is 1.0), while the latter converges to 0.8.

The left-shifted function requires a game that progresses from providing no score
chances to many very early in the game, while the right version of this function shifts
this score opportunity change to later in the game. This causes that, in the former

23

General Video Game Artificial Intelligence

0 200 400 600 800 1000
Generation

0.2

0.4

0.6

0.8
Fi

tn
es

s

Average fitness over all generations
Waves_Sig

Fitness

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

Av
er

ag
e

sc
or

e
fo

r e
ac

h
st

ep

Average score over all generations
Waves_Sig

gen = 0-100
gen = 100-200
gen = 200-300
gen = 300-400
gen = 400-500
wanted

Fig. 12: Fitness and average score trends for the (right) shifted sigmoid function
y = 150

1+exp(− x
20

+12)
in Waves.

case, the average score achieved is higher than in the latter trend, as more game
ticks are available to score. This can be clearly seen in both figures 11 and 12, right
plots. For instance, in the middle game (time step around 250), the score achieved in
the left-shifted case is higher than its counterpart. Similarly, the individuals of the
right-shifted sigmoid case evolved to provide fewer score opportunities in the first
half of the game.

It can be seen how, starting from a similar trend in the first generation segment
(blue lines), the left-shifted trend evolves progressions with higher scores, while the
right-shifted version stays at low values. The similar starting point is expected (initial
random parameters) and it is clear that NTBEA manages to find parameter sets with
very differentiated trends in the end, suggesting that this method is general and can
adapt to different target functions from the same starting point.

Validation of these games is again performed using MCTS to play the games
suggested by NTBEA. Figure 13 shows the score trends achieved by MCTS in these
games for the left-shifted (left figure) and right-shifted (right) target functions.

As can be seen, NTBEA is more successful at evolving games for the right-shifted
function. Acknowledging some evolved games fail dramatically at providing the de-
sired score trend in both cases (horizontal blue lines in Figure 13), most of the games
evolved for the right-shifted progression adjust better to the desired progression than
their counterparts of the left-shifted curve. For this one, the agents achieve (in the
best case) close to linear score trends. This suggests again that the left-shifted sig-
moid target is harder to approximate, and this actually is understandable: the game
must start with no score opportunities to quickly provide more, but stabilizing again
in less than 200 game steps at a maximum score. Again, it is worth remembering that

24

7 - Automatic General Game Tuning

0 100 200 300 400 500
Steps

50

0

50

100

150

200

250

sc
or

e
Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

0 100 200 300 400 500
Steps

25

0

25

50

75

100

125

150

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

Fig. 13: Average score trend on validation for Defender, shifted sigmoid target func-
tions y = 150

1+exp(− x
20

+3)
.

the target trends may be not achievable by the agents in the game spaces available
- they must be understood as guides for evolution.

The results for the logarithmic and exponential target functions are very similar
to the ones obtained for the sigmoid ones. Again, we plot the validation results in
the game Defender, which has shown to be the most challenging game of the three.
Figure 14 shows the results of average score for Defender, targeting the logarithmic
(left) and exponential (right) score progression functions.

0 100 200 300 400 500
Steps

0

50

100

150

200

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

0 100 200 300 400 500
Steps

0

20

40

60

80

100

120

140

sc
or

e

Validation results for Defender, played by mcts
setting 1
setting 2
setting 3
setting 4
setting 5
setting 6
setting 7
setting 8
setting 9
setting 10
wanted

Fig. 14: Average score trend on validations for the game Defender, logarithm and
exponential target functions (y = 15 log2(x) and y = 2

x
70 , respectively).

25

General Video Game Artificial Intelligence

In this case, the logarithmic trend again poses more problems to find games that
adhere to the target curves than the exponential one. The reason for this is the quick
and sudden requirement for score in the first steps of the game (it requires to achieve
35 points in the first 5 game steps). However, it is clear that the evolved games
behave similar under the same MCTS agent that plays them: the trends shown in
both images from Figure 14 are noticeably different.

We observed the values of the parameters evolved by NTBEA in Defender, the
game that has shown to be the hardest of the three studied here. In linear functions,
a higher slope (m = 1) in the trend tended to produce games with a higher supply
limit, slower bombing speed and alien spawn probability. Also, the alien spawn portal
stops creating enemies earlier on higher slopes than in the others.

Observing values evolved by NTBEA for the advanced target functions in De-
fender, we can see that the supply amount, alien movement speed and alien spawning
rate are higher in the right-shifted sigmoid function than in the left-shifted one. Por-
tals used for spawn aliens open and closed later in the exponential version, providing
a slower supply speed and faster alien movement.

Examples of the recommended Defender games can be found in an online video3.
These show some games evolved for each one of the target function families (linear,
sigmoids, logarithmic and exponential), where the differences can be easily observed
for each setting.

References

1. A. Isaksen, D. Gopstein, J. Togelius, and A. Nealen, “Discovering Unique Game Variants,” in Com-
putational Creativity and Games Workshop at the 2015 International Conference on Computational
Creativity, 2015.

2. A. Isaksen, D. Gopstein, and A. Nealen, “Exploring Game Space Using Survival Analysis,” in FDG,
2015.

3. K. Kunanusont, R. D. Gaina, J. Liu, D. Perez-Liebana, and S. M. Lucas, “The N-Tuple Bandit Evolution-
ary Algorithm for Automatic Game Improvement,” in IEEE Proceedings of the Congress on Evolutionary
Computation (CEC), 2017, pp. 2201–2208.

4. J. Liu, J. Togelius, D. Pérez-Liébana, and S. M. Lucas, “Evolving Game Skill-Depth using General Video
Game AI Agents,” in IEEE Proceedings of the Congress on Evolutionary Computation (CEC), 2017.

5. S. M. Lucas, J. Liu, and D. Perez-Liebana, “The N-Tuple Bandit Evolutionary Algorithm for Game
Agent Optimisation,” arXiv preprint arXiv:1802.05991, 2018.

6. ——, “The N-Tuple Bandit Evolutionary Algorithm for Game Agent Optimisation,” arXiv preprint
arXiv:1802.05991, 2018.

3 https://youtu.be/GADQLe2TiqI

26

https://youtu.be/GADQLe2TiqI

