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Procedural Content Generation (PCG) is to use a computer program/algorithm
to generate game content [16] automatically. This content could be anything in the
game such as textures [20], levels [12,8], rules [7], etc. PCG might be a little new
in research but it has been around since the beginning of computer games. It was
used as a game design element to allow replayability and new scenarios such as in
Rogue (Glenn Wichman, 1980). Also, it was used to allow new types of games with
huge amount of content using a small foot print such as in Elite (David Braben and
Ian Bell, 1984). Although more and more people have been adapting and using PCG
in their games and discovering new techniques, no one was tackling the problem of
generality. Most of the used techniques in the industry are all constructive [15] and
depend on a lot of hacks and tricks based on the game knowledge. Algorithms that
can adapt and work between different games are still a dream for the PCG field.
That is the main motivation behind having a PCG track in the GVGAI. We wanted
to give the people a framework to help them research towards finding more generic
ways that can generate new content with small amount of information about the
current game.

GVGAI framework has several different facets that define games: levels, inter-
action sets, termination conditions, and sprite sets (graphical representation and
types). We decided to start with tackling the level generation problem first as level
generation is one of the oldest and challenging problems that people are tackling
since the early 1980s. Later, we designed a new track for rule generation where the
user has to generate both interaction sets and termination conditions given the rest
of the facets. One of the core challenges for both tracks is how to define a good way
to compare the different generation techniques. For the competition, we relied on
humans to provide us with this data based by comparing two generate content from
different generators. The humans do the comparisons several times on examples of
each generator from different games, to make sure that the algorithm can adapt be-
tween different games and also can generate different levels for the same game. This
technique works fine for the competition, but it doesn’t help the users to understand
how to enhance their generator, as there is no specific set of rules that define what a
good level or game is. In this chapter, we will talk about these two different tracks:
level (Section 1) and rule generation (Section 2). For each one of them, we will dis-
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cuss their interface, the sample generators provided, and the latest techniques and
generators used.

1 Level Generation in GVGAI

The level generation track was introduced in 2016 as a new competition track [8].
It is considered the first content generation track for the GVGAI framework. The
competition focuses on creating playable levels providing the game description. In
this track, every participant submits a level generator that produces a level in a
fixed amount of time. The framework provides the generator with the game sprites,
interaction set, termination conditions, and level mapping, in return, the generator
produces a 2D matrix of characters, where each character represents the game sprites
at that location. The framework also allows the generator to provide their own level
mapping if needed.

Fig. 1: AbstractLevelGenerator Class functions.

The game information is provided to the generator using a GameDescription ob-
ject and ElpasedCpuTime object. Figure 1 shows the AbstractLevelGenerator class
that the participants should extend to create their level generator. A GameDescription

object is a structured data that provide access to the game information in a more
organized manner, while the ElpasedCpuTime object provides the user with the
remaining time for the generator to finish. When running the competition, the
ElpasedCpuTime timer gives each generator five hours to finish its job.
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1 BasicGame
2 S p r i t e S e t
3 f l o o r > Immovable randomt i l ing =0.9 img=oryx / f l o o r 3 hidden=True
4 goa l > Door img=oryx / doorc lo sed1
5 key > Immovable img=oryx /key2
6 sword > Or i en t edF l i cke r l i m i t=5 s i n g l e t o n=True img=oryx / s l a s h 1
7 movable >
8 avatar > ShootAvatar stype=sword frameRate=8
9 nokey > img=oryx /swordman1

10 withkey > img=oryx /swordmankey1
11 enemy > RandomNPC
12 monsterQuick > cooldown=2 cons=6 img=oryx / bat1
13 monsterNormal > cooldown=4 cons=8 img=oryx / sp ide r2
14 monsterSlow > cooldown=8 cons=12 img=oryx / scorp ion1
15 wal l > Immovable a u t o t i l i n g=true img=oryx / wal l3
16
17 I n t e r a c t i o n S e t
18 movable wa l l > stepBack
19 nokey goa l > stepBack
20 goa l withkey > k i l l S p r i t e scoreChange=1
21 enemy sword > k i l l S p r i t e scoreChange=2
22 enemy enemy > stepBack
23 avatar enemy > k i l l S p r i t e scoreChange=−1
24 nokey key > transformTo stype=withkey scoreChange=1 k i l l S e c o n d=

True
25
26 TerminationSet
27 Spr i teCounter stype=goa l win=True
28 Spr i teCounter stype=avatar win=False

Listing 1: VGDL Definition of the game Zelda.

Beside this object, the framework provides a helper class called GameAnalyzer

which analyzes the GameDescription object and provide additional information that
can be used by the generator. The GameAnalyzer divides the game sprites into five
different types.

– Avatar Sprites: sprites that are controlled by the player.
– Solid Sprites: static sprites that prevent the player movement and have no other

interactions.
– Harmful Sprites: sprites that can kill the player or spawn another sprite that can

kill the player.
– Collectible sprites: sprites that the player can destroy upon collision with them,

providing score for the player.
– Other sprites: any other sprites that doesn’t fall in the previous categories.

The GameAnalyzer also provides two additional arrays for spawned sprites and goal
sprites. It also provides a priority value for each sprite based on the number of times
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Sprite Name
Sprite
Image

Sprite
Type

Spawned
Sprite

Goal
Sprite

Priority
Value

floor Other FALSE FALSE 0

goal Other FALSE TRUE 3

key Collectible FALSE FALSE 1

sword Other TRUE FALSE 1

nokey Avatar FALSE TRUE 4

withkey Avatar FALSE TRUE 2

monsterQuick Harmful FALSE FALSE 4

monsterNormal Harmful FALSE FALSE 4

monsterSlow Harmful FALSE FALSE 4

wall Solid FALSE FALSE 1

Table 1: The GameAnalyzer data for the game of Zelda.

each sprite appears either in interactions or termination conditions. The spawned
sprites array contains all the sprites that can be generated from another sprite,
while the goal sprites array contains all the sprites that appear in the termination
conditions of the game. Table 1 shows the GameAnalyzer output of the VGDL game
Zelda defined in Listing 1. nokey, withkey, and goal are the only goal sprites as
they appeared in the termination conditions. sword is the only spawned sprite in
that game as it only appears when the avatar attacks (avatar spawns a sword to
attack). The sprite types are assigned based on the interactions of these objects with
each other and their sprite class. For example: withkey and nokey are avatar sprites
because they are of sprite class ShootAvatar, while monsterQuick, monsterNormal,
and monsterSlow are harmful sprites as they can kill the avatar sprites upon collision,
as defined in the interaction set.

In the following subsections, we describe the sample generators that are provided
with the GVGAI framework and competition and other generators that were sub-
mitted to the competition in the IJCAI 2016, CIG 2017, and GECCO 2018 or have
been published on or before 2018.
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1.1 Sample Generators

This section discusses the three sample generators provided with the GVGAI frame-
work in detail. Besides discussing how they work and function, we also elaborate at
the end about their advantages over each other and show a previous user study that
validates our claims.

Sample Random Generator This is the simplest known generator in the GVGAI
framework. The algorithm starts by creating a random sized level directly propor-
tional to the number of game sprite types. Then, it adds a solid border around the
level to make sure that all the game sprites will stay inside. Finally, it goes over every
tile with 10% chance to add a random selected sprite and makes sure that each game
sprite appears at least once and there is only one avatar in the level.

Sample Constructive Generator This is a simple generator that is provided with
the framework that uses the GameAnalyzer data to improve the quality of the gener-
ated levels. Figure 2 summarizes the core steps of the sample constructive generator.
The generator consists of four steps, plus pre-processing and post-processing.

1. (Pre-processing) Calculate cover percentages: This pre-processing step
helps the generator to define the map size and the percentage of tiles that will be
covered with sprites. The size of the map depends on the number of game sprites
in the game, while the cover percentage is directly proportional with the priority
value for each sprite.

2. Build the level layout: This is the first step in the generation. The algorithm
first builds a solid border around the level then it adds more solid objects inside
the level that are connected to each other and not blocking any area.

3. Add an avatar sprite: The generator adds a single avatar sprite in any random
empty space in the level.

4. Add harmful sprites: The generator adds harmful sprites to the map propor-
tional to the distance to the avatar to make sure the player doesn’t die as soon
as the game starts.

5. Add collectible and other sprites: The generator adds collectible and other
sprites at random empty locations of the map.

6. (Post-processing) Fix goal sprites: The generator makes sure that the number
of goal sprites is greater than the specified number of sprites in the termination
condition. If this is not the case, the generator adds more goal sprites till this
happens.
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Fig. 2: Steps applied in the constructive generator for VGDL Zelda. Top left: Build
the level layout. Top right: Add an avatar sprite. Bottom left: Add harmful sprites.
Bottom right: Add collectible and other sprites.

Sample Genetic Generator This is a search-based level generator based on using
Feasible Infeasible 2-Population genetic algorithm (FI2Pop) [9]. FI2Pop is a genetic
algorithm that keeps track of two populations: feasible and infeasible populations.
The infeasible population contains the chromosomes that do not satisfy the problem
constraints. The feasible population on the other hand tries to improve the over-
all fitness for the problem. At any point during the generation, if the chromosome
doesn’t satisfy the problem constraints it gets transferred to the infeasible population
and vice versa. The initial population is populated using the constructive generator
where each chromosome represents a generated level in the form of 2D array of tiles.
The generator uses one point crossover around any random tile and three mutation
operators.

– Create: create a random sprite at an empty tile position.
– Destroy: clear all the sprites from a random tile position.
– Swap: swap two random tiles in the level.

We use three different game controllers to evaluate the generated levels: a modified
version of OLETS, OneStepLookAhead, and DoNothing. OLETS is the winner of the
2014 single-player planning track of the GVGAI competition [14]. The algorithm is
based on Open Loop Expectimax algorithm (for more details check Chapter 4). The
algorithm was modified to play more like a human by introducing action repetition
and NIL actions whenever the agent changes direction. This modification was added
to influence the generated levels not to require super human reaction time to solve
them. OneStepLookAhead is just a simple greedy algorithm that picks the best action
for the immediate following move. DoNothing is a simple algorithm that does not
execute any action.
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These agents are used as part of the fitness calculation and constraint solving.
The feasible population fitness is divided into two parts.

– Relative Algorithm Performance: The first part of the fitness calculate the
difference in performance between the modified OLETS and OneStepLookAhead.
This is based on Neilsen et al. [13], which assumes that a good designed level/game
has a high performance difference between a good playing algorithm and bad one
playing at it.

– Unique Interactions: The second part of the fitness calculates the number of
unique interactions that fire in the game due to the player or an object spawned
by the player. We hypothesise that a good generated level should have enough
interactions that can be fired by the player to keep the game interesting.

For the infeasible population, the algorithm tries to satisfy seven different constraints.
These constraints were designed based on our understanding of GVGAI and our
intuition about a good level.

– Avatar Number: each level has to have only one avatar, no more and no less.
This constraint makes sure that there is one controllable avatar when the game
starts.

– Sprite Number: each level has to have at least one sprite from each non spawned
sprites. This constraint makes sure that the level is not missing any essential sprite
that might be needed to win.

– Goal Number: each level has to have an amount of goal sprites higher than the
number specified in the termination condition. This constraint makes sure the
level does not automatically end in a victory when the game starts.

– Cover Percentage: tiles should only cover between 5% and 30% of each level.
This constraint make sure the level is neither empty nor crowded with different
sprites.

– Solution Length: levels must not be solved in less than 200 steps to make sure
the level is not trivial.

– Win: levels must be winnable by the modified OLETS to make sure that players
can win it too.

– Death: the avatar must not die in the 40 steps when using the DoNothing player
to make sure the player does not die in the first couple of seconds of the game.

Pilot Study and Discussion In a previous work [8], the sample generators were
compared to each other through a pilot study using 25 human players. The study
was conducted on three different VGDL games.
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– Frogs : is a VGDL port for Frogger (Konami, 1981). The aim of the game is to
help the frog to reach the goal without getting hit by a car or drown in water.

– PacMan: is a VGDL port for PacMan (Namco, 1980). The aim of the game is to
collect all the pellets on the screen without getting caught by the chasing ghosts.

– Zelda: is a VGDL port for the dungeon system in The Legend of Zelda (Nintendo,
1986). The aim of the game is to collect a key and reach a door without getting
killed by enemies. The player can kill these enemies using their sword for extra
points.

For this pilot study, we generated three levels per game by giving each algorithm
5 hours maximum for generation. Each user is faced with two generated levels that
are selected randomly and they have to decided if the first level is better than the
second, the second level better than the first, both are equally good, or both are
equally bad.

Preferred Non-Preferred Total Binomial p-value

Search-Based vs Constructive 23 12 35 0.0447
Search-Based vs Random 21 10 31 0.0354
Constructive vs Random 17 24 41 0.8945

Table 2: Player preferences for each generator aggregated over the three games.

We hypothesise that the search based levels are better than constructive levels
which are better than random generated levels. Table 2 shows the result of that study
over all the three games. In that table, we only kept the results when any of the two
levels is better than the other, removing all the data where both levels are equally
good or equally bad. From the table we can be sure that the search based generated
levels are better than both constructive and random but it was surprising to find that
constructive generator and random generator were on the same tier. From further
analysis of the result, we think the result is the constructive generator didn’t make
sure there is at least one object from every different sprite type which caused some
of the constructive levels to be unsolvable compared to the random generated levels.

1.2 Competition and Other Generators

We can divide the level generator into three main categories based on their core
technique: constructive methods, search-based methods, and constraint-based meth-
ods. The sample random generator and sample constructive generator are both con-
structive methods while sample genetic generator is a search-based method. In the
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following parts, we are going to talk more about these algorithm and their core
technique.

Constructive methods Constructive methods uses generate levels directly by plac-
ing game sprites in the level based on game specific knowledge such as don’t place
player too close to enemies, don’t add solid sprites that isolates areas in the map, etc.
These generators don’t check for playability after generation as they are supposed to
be designed in a way to avoid these problems and make sure the generated content
is playable all the time.

Easablade constructive generator: is the winner of IJCAI 2016 level gener-
ation competition. This generator uses cellular automata [6] on multiple layers to
generate the level. The first layer is responsible to design the map layout, followed
by the exit sprite and the avatar sprite, then the goal sprites, harmful sprites, and
others.

N-Gram constructive generator: was submitted to CIG 2017 level generation
competition. It uses a n-gram model to generate the level. The generator uses a
recorded playthrough to generate the levels. The algorithm has cases for each different
type of interactions, for example: attacking involves adding an enemy some where
in the level, walking around a certain tile involve adding solid objects, etc. The n-
gram model is used to specify these rules so instead of reacting to a single action,
the system responds to a n-sequence of actions. During the generation the algorithm
also keeps track of all the placed sprites to make sure it doesn’t overpopulate the
level. Then, the avatar sprite at the bottom center of the level is added.

Beaupre’s constructive pattern generator: is a constructive algorithm that
was designed for Beaupre et al. [1] work on analyzing the effect of using design
patterns in automatic generation of levels for the GVGAI framework. In their work,
they analyzed 97 different games from the GVGAI framework using a 3 × 3 sliding
window over all the levels after transforming the levels to use sprite type from the
GameAnalyzer instead of the actual sprites. They constructed a dictionary that
contains all these different patterns (they discovered 12, 941 unique patterns) and
classified it based on the type of different objects mixed in. There are border patterns
which are patterns that appear on the border of the level, avatar patterns which are
patterns that contain an avatar sprite in them, and others. The algorithm starts by
checking if the game have solid sprites. If that was the case, it fills the border areas
using border patterns. The rest of the level is picked randomly from the rest of the
patterns based on their distribution while making sure there is only avatar in the
level and the level is still fully connected. Finally, the system converts the generic
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sprite types to specific game sprites while making sure that goal sprites numbers are
larger than the specified number in the termination condition.

FrankfurtStudents constructive generator: is designed for GECCO 2018
level generation competition. This generator is more handcrafted generator that tries
to identify the type of the game (racing game, catching game, etc) and based on that
type defines the level size and gives each game sprite a preferred position with respect
to other sprites and the level.

Search-based methods Search-based methods uses a search based algorithm such
as genetic algorithm to find levels that are playable and more enjoyable than random
placement of sprites. This section describes all the known search-based generators.

Amy12 genetic generator: is build on top of the sample genetic generator.
This generator was submitted to IJCAI 2016 competition. The idea is to generate
level that has a certain suspense curve. Suspense is calculated by measuring the
number of actions that leads to death during the gameplay using OLETS agent. The
algorithm tries to modify the level to get a suspense curve with three peak points
of less than 50% height. The advantage of doing that that it makes sure that the
generated levels are winnable as levels that are not winnable will have higher peaks
in the suspense curve.

Jnicho genetic generator: uses a standard genetic algorithm compared to
FI2Pop used in the sample generator [12]. The generator combines the constraints
and relative algorithm performance in a single fitness function where the relative
algorithm performance is measured between a MCTS agent and an OneStepLookA-
head agent. The score values of these agents is normalized between 0 and 1 to make
sure that the relative algorithm performance doesn’t overshadow the rest of the con-
straints. This generator was submitted to IJCAI 2016 competition.

Number13 genetic generator: is a modified version of the sample genetic gen-
erator. This generator was submitted to IJCAI 2016 competition. The generator uses
adaptive methods for crossover and mutation rates with a better performing agent
than the modified OLETS. It also allows crossover between feasible and infeasible
chromosomes which was not allowed in the sample generator.

Beaupre’s evolutionary pattern generator: uses similar idea to the their
constructive generator described in the constructive methods. This generator is a
modified version of the sample genetic generator provided with the framework but
with the chromosome represented as 2D array of patterns instead of tiles. In that
case, they use their constructive approach to initialize the initial population.

Sharif’s pattern generator: is submitted as a participant in GECCO 2018
competition. This generator similar to Beaupre’s evolutionary pattern generator in
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using identified patterns to build the level. In a previous work by Sharif et al. [17],
they identified a group of 23 different unique patterns that they are using during
the generation process. These patterns are selected to have similar meaning to the
pattern identified in the work by Dahlskog and Togelius in generating levels for Super
Mario Bros (Nintendo, 1985) [5].

Architect genetic generator: is the winner of GECCO 2018 level generation
competition. The algorithm is build on the sample genetic generator provided with
the framework, the only difference that it uses two-point crossover and a new con-
structive initialization technique. The new constructive technique is similar to the
sample random generator with some improvements. It starts with calculating the
size of the map, then building a level layout similar to the one used in the sample
constructive technique, followed by adding an avatar to the map. Finally 10% of the
map is picked randomly from all the possible sprites.

Luukgvgai genetic generator: is another GECCO 2018 submission, similar
to the other is a modified version of the sample genetic generator using tournament
selection and two-point crossover.

Tc ru genetic generator: is a modified version of the sample genetic generator
that uses eigth-point crossover and tournament selection instead of rank selection.
It also used cascaded fitness where the relative algorithm performance has higher
precedence than the unique interactions. This algorithm was submitted to GECCO
2018 GVGAI level generation competition.

Constraint-based methods Constraint-based methods used a constraint solver to
generate levels. The idea of the generator is to find the right constraints needed to
make sure the generated content is the targeted experience. So far only one generator
has been developed for GVGAI using that technique.

ASP generator: [11] uses Answer Set Programming (ASP) to generate levels.
The ASP programs are evolved using evolutionary strategy that uses relative algo-
rithm performance between the sampleMCTS agent and the sampleRandom agent.
The evolved rules are divided into three different types. The first type is a basic
set of rules that make sure the generated level is not complicated such as making
sure there is only one sprite per tile. The second type are more game specific rules
based such as identifying the Singleton sprites in the current game. The third type is
concerned with the maximum number of objects that can be produced for a certain
sprite type.
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1.3 Discussion

The presented generators differ in the amount of time needed to generate a level
and the features of the generated content. The constructive generators take the least
amount of time to generate a single level without a guarantee that the generated level
is beatable. On the other hand, both search-based and constraint-based generators
take longer time but generate challenging beatable levels as they use automated
playing agents as a fitness function. The constraint-based generator only takes long
time to find an ASP generator which could be used to generate many different levels
as fast as the constructive generators, while search-based generators take a long time
to find a group of similar looking levels.

Some of the presented algorithms were submitted to the GVGAI level generation
track in IJCAI 2016 (Easablade, Amy12, Number13, and Jnicho genertors), CIG 2017
(N-Gram constructive generator), and GECCO 2018 (Architect, FrankfurtStudents,
Sharif, Luukgvgai, and Tc ru generators). These generators were compared with
respect to each other during the competition.

Figure 3 shows the results from IJCAI 2016 competition.
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Fig. 3: IJCAI 2016 Level generation track results.

The algorithms were tested against four GVGAI games:

– Butterflies: is a VGDL game about collecting all butterflies before they open
all the cocoons in the level.

– Freeway: is a VGDL port of Freeway (David Crane, 1981). Similar to Frogs, the
goal is to reach the other side of the road without being ran over by cars. The
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difference is that this game is a score-based game where the player need to reach
the goal more than one time to get a better score.

– Run: is a VGDL runner game where the player is trying to outrun a flood coming
from behind and reach the exit door in time.

– The Snowman: in this game, the goal is to stack the snowman pieces (legs,
trunk and head) in the correct order to create a snowman.

The results are very clear that Easablade beats the other three generators. A possible
reason is that Easablade generated a few amount of sprites in the generated scene
with a nice layout. On the other hand, all the generated levels were either unplayable
(exits hidden behind a wall) or easy to beat (exits directly beside the player).
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Fig. 4: GECCO 2018 level generation track results.

Figure 4 shows the results from GECCO 2018 competition. The algorithms were
tested against three GVGAI games picked from stepheston et al. work [18] on finding
the most discriminatory VGDL games.

– Chopper: is a VGDL action game where the player needs to collect bullets to kill
the incoming tanks without getting killed by the bullets from the enemy tanks.
Also, the player has to protect the satellites from being destroyed.

– Labyrinthdual: is a VGDL puzzle game where the player tries to reach the exit
without getting killed by touching spikes by changing their color to pass through
colored obstacles.
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– Watergame: is a VGDL puzzle game about trying to reach the exit without
drowning in water. To pass the level, the player has to push couple of potions
around to convert the water to floor so the player can pass over it.

Architect won the competition with a small difference compared to Easablade. The
reason behind the winning is not clear as some other generators have similar looking
levels. Shockingly, Easablade got the worst rating compared to the random generator.
We think that the choice of games affected the outcome of the competition. For
example a puzzle game like Watergame is only playable if it is solvable having a big
level and sparse object will be against the generator interest while in a game like
freeway that might be better.

2 Rule Generation in GVGAI

The rule generation track was introduced in 2017 as a new competition track [7]. It is
the second generation track for the GVGAI framework. The competition focuses on
creating a new playable games for a provided game level with all the game sprites. In
this track, every participant submits a rule generator that produces the interaction
sets and termination conditions in a fixed amount of time. The framework provides
the generator with a game level in form of 2D matrix of characters which can be
translated to its corresponding game sprites using the provided level mapping. In
return, the generator produces two arrays of strings that cover the game interaction
set and termination conditions.

Fig. 5: AbstractruleGenerator Class functions.

The game level and the game sprites are provided through the SLDescription

object. Figure 5 shows the AbstractRuleGenerator class the user needs to extend to
build their own rule generator. The user has to implement generateRules function
and return the two arrays that contain the game interaction set and the termination
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conditions provided the SLDescription object and ElapsedCpuTimer object. The
SLDescription object provides the generator with a list of all game sprites. These
game sprites have name, type, and related sprites. For example: In Zelda, shown
in Listing 1, the player character is named avatar and it is of type ShootAvatar

(which means it can shoot in all four directions) and has sword as related sprites (as
it shoots it in any of the four directions). Beside the game sprites, the SLDescription
object provides a 2D matrix that represents the game level where each cell repre-
sents the sprites that are present in that cell. When running the competition, the
ElapsedCpuTimer provides the generator with five hours to finish generation.

The user can also override an optional function called getSpriteSetStructure

which returns a hashmap between a string and an array of strings. The hashmap
represents the sprite hierarchy required during the rule generation. For example:
In zelda, the user can generate three rules that kill the avatar when it hits any
monsterQuick, monsterNormal, and monsterSlow sprites or they can generate one
rule that kills the avatar when it hits a harmful sprite and then define the harmful

sprite in the sprite structure as all these three monsters.

Fig. 6: The provided level for Zelda.

The framework also provides the user with a LevelAnalyzer object that ana-
lyzes the provided level and allows the user to ask about sprites that cover certain
percentages of the map and/or of a certain type. For example: the generator can get
the background sprite by asking the LevelAnalyzer to get an Immovable sprite that
covers 100% of the level. This information could be used to classify the game sprites
to different classes. Table 3 shows some example classes that can be recognized from
the game of Zelda presented in figure 6. These categories are defined based on gen-
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eral game knowledge. For example: score objects such as coins in Mario covers small
percentage of the level.

Class Type
Sprite
Image

Sprite Type Threshold
Surrounding

Level

Background Immovable ≥ 100% FALSE

Wall Immovable < 50% TRUE

Score/Spike Immovable < 10% FALSE

Table 3: The LevelAnalyzer data for the game of Zelda.

We ran the rule generation track twice: at CIG 2017 and GECCO 2018. In both
times, we didn’t get any submissions due to the lack of advertisement for the track
and the harder the problem is to tackle (generating rules for a game is harder than just
producing a level). In the following subsections, we will discuss the sample generator
that were provided with the competition and the only other generator that we found
in the literature which was created before the track existed.

2.1 Sample Generators

In similar manner to the level generation track, the rule generation track comes with
three different generators: random, constructive, and search based generators. These
generators increase in complexity and quality of the generated content.

Sample random generator The sample random generator is the simplest of all
the generators. The generator just pick any random interactions and termination
conditions that will compile into a VGDL game without any errors. The generator
follows the following steps to generate a random VGDL game.

1. Pick a random number of interactions.
2. Generate a random amount of interactions by repeating the following steps until

reaching the chosen amount of interactions while making sure it compiles with
no errors:

(a) pick two random sprites.
(b) pick a random scoreChange value.
(c) pick a random interaction.

3. Generate two terminal conditions for winning and losing.
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– Winning: either a time out with a random time or a certain sprite count
reaches zero.

– Losing: if the avatar dies, the game is lost.

Sample constructive generator The constructive generator is more sophisticated
than the sample generator. It uses a template based generation to generate a good
playable game. The generator has a game template that was designed based on
game knowledge. For example: if there is a Non-Playable Character (NPC) running
after a certain object, there is a high chance that it will kill it upon collision. The
generator utilizes the sprite types from SLDescription object and sprite classes from
LevelAnalyzer object to fill the template. The following are the steps taken by the
sample generator.

1. Get Resource Interactions: collectResource interaction is added for all the
resource sprites.

2. Get Score and Spike Interactions: each object has 50% chance to be either
collectible or harmful. Collectible sprites are killed upon collision with the avatar
and give one point score. Spike sprites kills the avatar upon collision.

3. Get NPC Interactions: different interactions are added for different types of
NPCs. Usually they are either collected by the avatar for 1 score point or kill the
player upon collision. Some NPCs could spawn other sprites which also could be
either collectible or deadly.

4. Get Spawner Interactions: Similar to NPCs, spawner sprites decide if the
generated sprites will kill the avatar or get collected for points.

5. Get Portal Interactions: if the portal is of type door, the avatar will destroy
it upon collision. Otherwise, the avatar is moved to the destination portal.

6. Get Movable Interactions: the generator decides randomly if these movable
objects are harmful or collectible sprites.

7. Get Wall Interactions: the generator decides if the wall sprites will be fire walls
or normal walls. Fire walls kill any movable sprite upon collision, while normal
walls prevent any movable sprite.

8. Get Avatar Interactions: This step only happens if there are any harmful
sprites being generated and the avatar can shoot bullets. The generator adds
interactions between the bullets and harmful sprites to kill both of them upon
collision.

9. Get Termination Conditions:
– Winning: The generator picks a random winning condition such as the avatar

reached a door, all harmful sprites are dead, all the collectible sprites are
collected, or time runs out.

– Losing: the game is lost when the avatar dies.
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Sample genetic generator Similar to the level generation track, the search based
algorithm uses the FI2Pop algorithm [9] to generate interaction set and termination
conditions. The infeasible chromosomes try to become feasible by satisfying these
three constraints.

– Interaction set and termination conditions compile with no errors.
– A do-nothing agent stays alive for 40 frames.
– The percentage of bad frames are less than 30%, where bad frames are frames

where one sprite or more are outside of the screen boundaries.

If the chromosome satisfies these constraints, it get moved to the feasible population.
The feasible chromosomes try to improve their fitness. The feasible fitness consists
also of three parts.

– Increase the relative algorithm performance [13] between three different agents
(OLETS agent, MCTS agent, and random agent, in this order of performance).

– Increase the number of unique rules that are fired during the game playing session.
Game rules are added to be used, if a rule is not being used by any agent then it
violates this constraint.

– Increase the time the agent takes to win the level. We don’t want games that
could be won in less than 500 frames (20 seconds).

We used rank selection with 90% chance for crossover and 10% chance for mu-
tation. We used one-point crossover to switch both interaction set and termination
conditions. For the mutation, three different operators were used.

– Insertion: either inserting a new rule/termination condition or inserting a new
parameter.

– Deletion: either delete a rule parameter or delete an entire rule/termination
condition.

– Modify: either modify one of the rule parameters or modify the rule/termination
condition itself.

We initialized the algorithm with 10 constructive chromosomes, 20 random chromo-
somes, and 20 mutated versions of the constructive chromosomes to a have a popu-
lation of size of 50. We used 2% elitism which keeps the best chromosome between
generations.

Pilot Study and Discussion We applied these three generators on three different
games (Aliens, Boulderdash, and Solarfox) selected based on the different algorithm
performance by Bontrager et al. work [2]. Our first study was to see the diversity
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Fig. 7: Probability density of the similarity metric between the generated games.
These graphs represent Aliens, Boulderdash, and Solarfox from left to right. “0”
means the games are identical, while “1” means the games are totally different.

Aliens Boulderdash Solarfox

Genetic vs Rnd 2/8 7/7 11/15
Genetic vs Const 0/14 8/14 6/18
Const vs Rnd 9/10 10/11 4/5

Table 4: Comparison between our rule generators where “Genetic” is the sample
genetic generator, “Rnd” is the sample random generator, or “Const” is the sample
constructive generator. The first value is the number of times the user preferred the
first game over the second. The second value is the total number of comparisons.

of the generated content between these generator on these three games. Figure 7
shows the probability density function of how similar the generated games to each
other where 0.0 means 100% similar and 1.0 means they are totally different. These
distribution were calculated by generating 1000 games from both sample random
generator and sample constructive agent and 350 generated games from the sample
genetic generator (due to time constraints). From all distributions, we can see that
the sample genetic generator is able to generate games that ranges from very similar
to each other to totally different, while the constructive generator was very limited to
similar games, which was expected as we are using a template with a small amount
of parameters to be changed.

We also conduced a similar user study to the level generator track to compare
these three generators to each other in terms of preference. The users were faced with
two generated games with the same level layout from either the same generator or a
different generator, and we asked them to pick which one they thought it was best
(first or second), both of them being equally good, or neither of them being good.
Table 4 shows the results of the user study. As we expected constructive generator
and genetic generator are mostly preferred over the random generator except for
Aliens in the genetic generator. The reason for aliens being different is the genetic
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generator didn’t have much time to evolve so to satisfy the constraints it generated a
game with undoAll as an interaction between player and background to satisfy the
bad frames constraint. undoAll interaction pauses the whole game, not allowing for
anything to happen. Another remark is that the genetic generator was not preferred
over the constructive one. We think the reason for that is the constructive templates
were better designed and users never noticed they are similar to each other.

2.2 Other Generators

As far as we are aware, there is only one other work that was done towards rule
generation, by Thorbjørn et al. [13]. The generator is similar to the sample genetic
generator as the sample generator idea was based on that work. Both generators use
the difference between the performance of different algorithms (relative algorithm
performance) as an evaluation function. The difference is that this generator uses
evolutionary strategies with mutation operators to generate an entire game instead
of interaction set and termination conditions.

2.3 Discussion

The rule generation competition has been running for two years but no one has
submitted yet to it. We think the reason behind that might be that the competition
is harder than level generation (need more computations) and usually runs at the
same time with level generation so the competitors either choose to participate in the
level generation competition. We think that there is a huge opportunity of research
in rule generation competition. Some researchers work on generating full games [19]
based on Ralph Koster Theory of Fun [10], generating games by modifying the game
code [4], generating games based on a single work [3], etc.
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