
Chapter 5 - Learning in GVGAI

Jialin Liu

The previous chapters mainly discuss the design of the GVGAI framework and
planning in GVGAI, in which a Forward Model (FM) of each game is available.
GVGAI can also be used as a Reinforcement Learning (RL) platform. In this context,
the agent is not allowed to interact with the FM to plan ahead actions to execute
in the real game, but need to learn through experience, thus playing the actual
game multiple times (as episodes in RL), aiming at improving their performance
progressively.

Two research questions are conducted. First, can we design a learning agent A1

which is capable of playing well on unknown levels of game G1 after having been
trained on a few known levels of the same game? Then, on a new game G2, is it
possible to train an agent A2, based on A1, more efficiently than from scratch? The
first question focus on improving an agent’s ability of performing similar tasks with
same objectives and rules. An application is the autonomous order picking robots in
the warehouses, which can optimize the routes and travel through different picking
areas to maximize pick-up efficiency. The second one aims at enhancing learning
efficiency on new tasks by transferring the knowledge learnt on distinct ones (e.g.,
tasks with different rules). For instance, a tennis player perhaps masters badminton
more quickly than someone who plays neither sport.

This chapter raises first the challenges of learning in GVGAI (Section 2.1). Section
2 provides an overall view of the GVGAI learning platform, then present the two
environments that have been implemented. Section 3 presents the rules and games
used in the competitions, the approaches that have been used by the submitted agents
to the competitions, together with the analysis of the performance of the different
approaches. The competition entries are described in Section 4.

1 Challenges of Learning in GVGAI

The planning and learning tasks share some identical challenges including, but not
limited to, the lack of a priori knowledge, requirement of generality, delayed rewards
(usually together with a flat reward landscape) and real-time constraints.

Lack of a priori knowledge The lack of a priori knowledge is two-fold. First, game
rules are not provided. The agent objective is to win a game but it has no knowledge
about how to score, win/lose or any of the termination conditions. Only the agent’s

1



General Video Game Artificial Intelligence

state observation at current game tick, including the legal actions in the current
state, is accessible. However, this state observation does not necessarily cover the
whole game state. Secondly, in the corresponding competitions, only some of the
game levels are released for training; the agents will be tested on unseen levels.

Real-time constraints Due to the real-time feature of video games, the construction
and initialization of a learning agent should not take too long, and during the game
playing, an agent needs to decide an action rapidly enough (in the GVGAI compe-
titions, no more than 1s and 40ms, respectively). This ensures a smoother playing
experience, similar to when a human player plays a real-time video game. For this
reason, in the competitions presented later in Section 3, a learning agent is disqual-
ified in the competition or a doNothing action is performed instead of its selection
depending on the actual time it takes to select an action.

General game playing Another issue is that an agent trained to perform well on a
specific level of a specific game may perform fairly on a similar game level but fails
easily on a very different game or level. For instance, a human-level Super Mario
agent may not survive long in a PacMan game; an agent which dominates in Space
Invaders is probably not able to solve Sokoban. Designing a single agent that performs
well on a set of different unknown games is not trivial.

Delayed rewards In all the games in the GVGAI framework (as well as in the compe-
titions), the main task is to win the game. However, no winning condition is provided
but the instant game score at the current episode. In puzzle and board games, the
landscape of instant scores during game-play is usually flat until the last episode,
therefore the design of some heuristic and planning ahead are necessary. Defining an
appropriate heuristic is not trivial neither for unseen levels of a game or for a set of
games.

2 Framework

Different from the planning tracks, no FM is given to the agents in the learning
environment, thus, no simulation of games is available. To avoid accessing to the
forward model, a new interface was implemented in 2017 on top of the main GVGAI
framework. Then, Philip Bontrager and Ruben Rodriguez Torrado interfaced ittwith
OpenAI Gym in 2018. The former one has been used in the first GVGAI Learning
Competition organized at the IEEE’s 2017 Conference on Computational Intelligence
and Games (IEEE CIG 2017), which supports agents written in Java and Python.
Then the second competition was organized at the IEEE’s 2018 CIG using a modified

2



5 - Learning in GVGAI

framework interfaced with OpenAI Gym, which only supports agents written in
Python. The GVGAI framework makes it easy to train and test learning agents
potentially on an infinity number of games thanks to the use of VGDL. This is a
difficult reinforcement learning problem due to the required generality and limited
online decision time.

2.1 GVGAI Learning Framework

A number of games are provided in each game set of which each includes a number
of levels (usually five in the framework). Thanks to VGDL and the integrated games
provided by the GVGAI framework, this enables the option to design different sets
of games and levels.

Execution in a set would have two phases: a Learning Phase using NL levels of
the N available and a Test Phase, using the other NT levels with NT = N −NL. The
big picture of these two phases are given below, though there are some differences in
details in the 2017’s and 2018’s competitions.

Learning phase: An agent has a limited amount of time, TL, for playing a set
of M games with NL learning levels each. It will play each of the NL levels once,
then to be free to choose the next level to play if there is time remaining. The agent
is allowed to send the action abort to finish the game at any moment, apart from
the normal available game actions. The method result is called at the end of every
game playing regardless if the game has finished normally or been corrupted by the
agent using abort. Thus, the agent can play as many games as desired, potentially
choosing the levels to play in, as long as it respects the time limit TL.

Test phase: After the learning phase, the trained agent is tested on the NT test
levels that have never been seen during learning. The win rate and statistics of the
score and game length over the test trials are used to evaluate the agents.

Note that no FM is accessible during neither of the phases, but learning agents re-
ceive an observation of the current game state at every game tick in different form(s),
depending on which GVGAI learning environment is used. Both environments are
available on-line and can be used for research on general video game learning.

2.2 GVGAI Learning Environment

The GVGAI Learning Environment used in the IEEE CIG 2017’s Single-Player
Learning Competition is briefly introduced in this section, more technical details
about how to set up the framework and the competition procedure are described in
the technical manual [12].

3



General Video Game Artificial Intelligence

The GVGAI Learning Environment is part of the same project as the planning
environment1. It supports learning agents written in Java or Python. At every game
tick, the agent is allowed to send a valid game action to execute in the game, and, at
the same time, to select the format of the next state observation to receive between
a serialized JSON game observation (String) and a screenshot of the game screen
(PNG). At any time, the agent can select the format of the game observation to be
received at next game tick, using one of the following types:

1 lastSsoType = Types .LEARNING SSO TYPE.JSON; // reques t f o r a JSON
2 lastSsoType = Types .LEARNING SSO TYPE.IMAGE; // reque s t f o r a screen−shot
3 lastSsoType = Types .LEARNING SSO TYPE.BOTH; // reques t f o r both

The choice will be remembered until the agent makes another choice using the
above commands. An example of the screenshot is given in Figure 1.

Fig. 1: Example: screenshot of a game screen.

Below is an example of the serialized state observation.

1 S e r i a l i z a b l e S t a t e O b s e r v a t i o n {
2 phase=ACT, i s V a l i d a t i o n=f a l s e , gameScore =8.0 ,
3 gameTick=150 , gameWinner=NO WINNER, isGameOver=f a l s e ,
4 worldDimension =[230 .0 , 2 0 0 . 0 ] , b l o ckS i z e =10, noOfPlayers =1, . . .
5 . . .
6 a v a i l a b l e A c t i o n s =[ACTION USE, ACTION LEFT, ACTION RIGHT] ,
7 avatarResources ={} ,

1 https://github.com/GAIGResearch/GVGAI

4

https://github.com/GAIGResearch/GVGAI


5 - Learning in GVGAI

8 observat ionGr id={
9 Observation { category =6, i type =0, obsID=578 , p o s i t i o n =0.0 : 0 . 0 ,

10 r e f e r e n c e =−1.0 : −1.0 , sqDis t =2.0}
11 . . .
12 Observation { category =6, i type =11, obsID=733 , p o s i t i o n =150.0 : 40 . 0 ,

r e f e r e n c e =−1.0 : −1.0 , sqDis t =24482.0}
13 } ,
14 r e s o u r c e s P o s i t i o n s=nul l , p o r t a l s P o s i t i o n s=nul l ,

f r omAvatarSpr i t e sPos i t i ons=n u l l }
15 }

As in the planning environment, a Java or Python agent should inherit from an
abstract class AbstractPlayer, implement the constructor and three methods: act,
init and result. The class must be named Agent.java or Agent.py.

Implementation of a learning agent

Agent() The constructor is called once per game and must finish in no more than
START TIME (by default 1s) of CPU time, thus it is called once during the learning
and test phases of each game.

init(SerializableStateObservation sso, ElapsedCpuTimer elapsedTimer) Af-
ter creating an agent, init() is called before every single game run. It should finish
in no more than INITIALIZATION TIME (by default 1s) of CPU time.

act(SerializableStateObservation sso, ElapsedCpuTimer elapsedTimer) At
each game tick, act() is called and determines the next action of the agent within
the prescribed CPU time ACTION TIME (by default 40ms). The possible actions are
ACTION LEFT, ACTION RIGHT, ACTION UP, ACTION DOWN, ACTION USE and ACTION NIL

(do nothing). The agent will be disqualified immediately if more than ACTION TIME DISQ

(by default 50ms) is taken. Otherwise, a NIL action (do nothing) is applied. Note
that it is possible that in a game or at a game state, not all the actions listed above
are available (legal) actions, but ACTION NIL always is.

result(SerializableStateObservation sso, ElapsedCpuTimer elapsedTimer)

This method is called at the end of every game. It has no time limit, so the agent
doesn’t get penalized for overspending other than the TOTAL LEARNING TIME indi-
cated. The agent can play with the time it spends on the result call to do more
learning or to play more games. At each call of result, an action or a level number
should be returned.

5



General Video Game Artificial Intelligence

Termination A game playing terminates when the player wins/loses the game or the
maximal game ticks (MAX TIMESTEPS) is reached.

Time out If the agent returns an action after ACTION TIME but no more than
ACTION TIME DISQ, then the action ACTION NIL will be performed.

Disqualification If the agent returns an action after ACTION TIME DISQ, the agent is
disqualified and loses the game.

Parameters The notation and corresponding parameters in the framework are sum-
marized in Table 1, as well as the default values.

Parameters for client (agent)

Variable Default value Usage

START TIME 1s Time for agent’s constructor
INITIALIZATION TIME 1s Time for init()

ACTION TIME 40ms Time for returning an action per tick
ACTION TIME DISQ 50ms Threshold for disqualification per tick

TOTAL LEARNING TIME 5min Time allowed for learning a game
EXTRA LEARNING TIME 1s Extra learning time

SOCKET PORT 8080 Socket port for communication

Parameters for server

Variable Default Usage

MAX TIMESTEPS 1000 Maximal game ticks a game can run
VALIDATION TIMES 10 Number of episodes for validation

Table 1: The main parameters in the learning framework.

2.3 GVGAI Gym Environment

GVGAI Gym is a result of interfacing the GVGAI framework to the OpenAI Gym
environment by Ruben Rodriguez Torrado and Philip Bontrager, PhD candidates at
the New York University School of Engineering [15]. Beside the more user-friendly
interface, a learning agent still receives a screenshot of the current game screen and
game score, then returns a valid action at every game tick. An example of a random
agent that plays first level of Aliens using GVGAI Gym is illustrated in Figure 2. We
compare the GVGAI Gym implementation and the original GVGAI environment in
Table 2.

6



5 - Learning in GVGAI

GVGAI Planning
GVGAI Learning GVGAI Gym

1-Player 2-Player

Similarities

• Play unseen games, no game rules available
• Access to game score, tick, if terminated
• Access to legal actions
• Access to observation of current game state

Forward model? Yes No NO
History events? Yes No NO

State Observation?
Java object String or PNG PNG

Java Java &Python Python

Table 2: Comparison of the planning and learning environments.

Fig. 2: Sample code of randomly playing the first level of Aliens using GVGAI Gym.

2.4 Comparing to Other Learning Frameworks

Other general frameworks like OpenAI Gym [5], Arcade Learning Environment (ALE) [3]
or Microsoft Malmö [7] contain a great number of single-/multi-player, model-free or
model-based tasks. Interfacing with these systems would greatly increase the number
of available games which all GVGAI agents could play via a common API. This would
also open the framework to 3D games, an important section of the environments the
current benchmark does not cover.

At the time of writing, ALE [3] offers higher-quality games than GVGAI as they
were home-console commercial games of a few decades ago, whereas the GVGAI
provides a structured API (information available via Java objects, or JSON interface,
or screen capture); the agents are tested on unseen games; and there is potentially
infinite supply of games. In GVGAI terms, ALE offers just two tracks: single-player
learning and planning, with the learning track being the more widely used. The
GVGAI framework has the potential to be expanded by adding a two-player learning
track, which will offer more open-ended challenges. This is outside of the current
scope of ALE. Again, thanks to VGDL, it is much more easier to create new games
or to create new levels for these games, using the GVGAI Learning environment or

7



General Video Game Artificial Intelligence

GVGAI Gym. It is also easy to automatically generate variations on existing VGDL
games and their levels. Thus, the users can apply procedural content generation to
generate game and level variations for training and testing their learning agents.
GVGAI is more easily extensible than ALE, and offers a solution to overfitting.

3 GVGAI Learning Competitions

At the time that this book is written, only two GVGAI learning competitions have
been organized. In this section, we describe the competition rules and core challenges
of individual competition besides the common challenges of both that have been
presented in Section 2.1.

3.1 Competition using the GVGAI Learning Environment

The first GVGAI learning competition was organized at the IEEE’s 2017 Conference
on Computational Intelligence and Games (IEEE CIG 2017).

Competition Procedure and Rules In this competition, 10 games are used, of
which 3 levels are given for training and 2 private levels are used for testing. The
set of 10 games used in this learning competition is the training set 1 of the 2017
GVGAI Single-Player Planning Competition.

The Learning Phase consists of two steps, referred to as Learning Phase 1 and
Learning Phase 2. The whole procedure is illustrated in Algorithm 1 and Figure 3.
An agent has a limited duration 5 mins (legal learning duration) in total for both
training phases. The communication time is not included by the Timer. In case that
5min has been used up, the results and observation of the game will still be sent to
the agent and the agent will have no more than 1 second before the test.

Fig. 3: Learning and test phases for one game in the 2017 single-player learning
competition. In the competition, an agent will be executed on a set of (usually 10)
unknown games, thus this process will repeat 10 times.

During the Learning phase 1 of each game (lines 2-5 of Algorithm 1), an agent
plays once the three training levels sequentially. At the end of each level, whether
the game has terminated normally or the agent forces to terminate the game (using
abort), the server will send the results of the (possibly unfinished) game to the agent
before termination.

8



5 - Learning in GVGAI

Algorithm 1 Main procedure of the 2017 learning competition.

Require: G set of games
Require: L set of training levels (per game)
Require: T set of training levels (per game)
Require: π and agent

1: for each game G ∈ G do
2: for each game level ∈ GL do
3: Let π play level once
4: nextLevel← π.result()

5: while Time is not elapsed do
6: Let π play nextLevel once
7: nextLevel← π.result()

8: for each game G ∈ G do
9: for each game level ∈ GT do

10: RESG ← Results of 10 games of π on level

11: return RESG

After having finished Learning phase 1, the agent is free to select the next level to
play (from the three training levels) by calling the method int result() (detailed
in Section 2.2). If the returned index of the selected level is not a valid index, then
a random index from the valid indexes will be passed and a new game will start.
This step (Learning Phase 2 ) (lines 6-9 of Algorithm 1) is repeated until the legal
learning time has expired.

After looping over the whole set of games, the Test Phase (lines 11-15 of Algo-
rithm 1) starts. The trained agent repeatedly plays 10 times the private test levels
sequentially. There is no more total time limit, but the agent still needs to respect
the time limits for the methods init, act and result, and can continue learning
during the game playing.

Challenges of the Competition Beside the challenges of learning in GVGAI
(Section 2.1), there are some other crucial problems due to the competition rules,
such as how to select which level to train next; how to distribute the total learning
duration; which type of state observation to receive; training different models for
different games or training one unique model; etc. None of these is trivial to decide
and no entry performed reasonably in the competition. Therefore, the competition
rules were changed for 2018.

Competition results In the 2017 edition of GVGAI learning competition, the
execution of controllers was divided into two phases: learning and validation. In the

9



General Video Game Artificial Intelligence

learning phase, each controller has a limited amount of time, 5 min, for learning
the first three levels of each game. The agent could play as many times as desired,
choosing among these three levels, as long as the 5 min time limit is respected. In the
validation phase, the controller plays 10 times the levels 4 and 5 sequentially. The
results obtained in these validation levels are the ones used in the competition to rank
the entries. Besides the two sample random agents written in Java and Python and
one sample agent using Sarsa written in Java, the first GVGAI single-player learning
track received three submissions written in Java and one in Python [11]. The results
are illustrated in Table 3. The winner of this track is a naive implementation of the
Q-Learning algorithm (Section 4.5).

Agent
Training set Test set

Score Ranking Score Ranking

kkunan 125 6 184 1
sampleRandom† 154 2 178 2

DontUnderestimateUchiha 149 3 158 3
sampleLearner† 149 4 152 4
ercumentilhan 179 1 134 5

YOLOBOT 132 5 112 6

Table 3: Score and ranking of the submitted agents in the 2017’s GVGAI Learning
Competition. †denotes a sample controller.

Table 4 compares the best scores by single-player planning and learning agents
on the same test set. Note that one of the games in the test set is removed from the
final ranking due to bugs found in the game itself. The best performance of learning
agents on tested games is far worse than what the planning agents can achieve.

3.2 Competition using the GVGAI Gym

The GVGAI Gym has been used in the learning competition organized at the IEEE’s
2018 Conference on Computational Intelligence and Games (IEEE CIG 2018).

Competition Procedure and Rules The competition rules have been changed
based on the experience of the first GVGAI learning competition. The main proce-
dures are as follows.

1. Three games with two public levels each were given for training one month before
the submission deadline. The participants were free to train their agents privately
with no constraints and can use any computational resource that they had.

10



5 - Learning in GVGAI

Game
1-P Planning 1-P Learning
Best score Best score Agent

G2 109.00± 38.19 31.5 ± 14.65 sampleRandom†
G3 1.00± 0.00 0±0 *
G4 1.00± 0.00 0.2 ± 0.09 kkunan
G5 216.00± 24.00 1±0 *
G6 5.60± 0.78 3.45± 0.44 DontUnderestimateUchiha
G7 31696.10± 6975.78 29371.95±2296.91 kkunan
G8 1116.90± 660.84 35.15±8.48 kkunan
G9 1.00± 0.00 0.05± 0.05 sampleRandom†
G10 56.70± 25.23 2.75 ± 2.04 sampleLearner†

Table 4: Table compares the best scores by single-player planning and learning agents
on the same test set. Note that one of the games in the test set is removed from the
final ranking due to bugs in the game itself. †denotes a sample controller.

2. After the submission deadline, three new private levels of each of the three games
are used for validation. The validation phase was ran by the organizers using one
single laptop. Each experiment has been repeated 10 times. During validation,
each agent has 100ms per game tick to select an action.

Three test games with very different aspects have been designed for this compe-
tition. The game 1 is modified from Aliens, and the only difference is that the avatar
is allowed to shoot and move in four directions instead of one and two directions,
respectively. The game 2 is a puzzle game called Lights On, in which the avatar wins
if it turns on the lights shown on the right end of the game screen (e.g., Figure 4).
The game 3 is modified from a deceptive game by [1], called DeceptiCoins.

Fig. 4: Screenshot of the puzzle game Lights On that has been used in the second
GVGAI learning competition. The screenshot illustrates the initial state of a level.

11



General Video Game Artificial Intelligence

Table 5: Score and ranking of the submitted agents in the 2018’s GVGAI Learning
Competition. †denotes a sample controller.

Game Game 1 Game 2 Game 3
Ranking

Level 3 4 5 3 4 5 3 4 5

fraBot-RL-Sarsa -2 1 -1 0 0 0 2 3 2 1
fraBot-RL-QLearning -2 -1 -2 0 0 0 1 0 2 2

Random†† -0.5 0.2 -0.1 0 0 0 3.5 0.7 2.7 3
DQN† 61.5 -1 0.3 0 0 0 - - - -

Prioritized Dueling DQN† 36.8 -1 -2 0 0 0 - - - -
A2C† 8.1 -1 -2 0 0 0 - - - -

OLETS Planning Agent 41.7 48.6 3.1 0 0 2.2 4.2 8.1 14 -

Challenges of the Competition The new competition rules and more user-
friendly framework make the users focus more on the learning algorithms, including
those that are already compatible with Open AI Gym. The fact that users are free
to train their agents privately using as much as learning time and computational
resources as they like enables more opportunities and possibilities. However, some
classic learning algorithms are not able to handle the different dimensions of the
screen that distinct games have.

Competition results This edition of the competition received only 2 entries,
fraBot-RL-QLearning and fraBot-RL-Sarsa, submitted by the same group of con-
tributors from the Frankfurt University of Applied Science. The results of the entries
and sample agents (random, DQN, Prioritized Dueling DQN and A2C [15]) are sum-
marized in Table 5. For comparison, the planning agent OLETS (with access to the
forward model) is included. DQN and Prioritized Dueling DQN are outstanding on
level 3 (test level) of the game 1, because the level 3 is very similar to the level 2
(training level). Interestingly, the sample learning agent DQN outperformed OLETS
on the third level of game 1. For instance, the baseline agents DQN, Prioritized Duel-
ing DQN and A2C are not able to learn the game DeceptiCoins due to the different
game screen dimensions in different levels, despite their outstanding performance on
the test levels of the game modified from Aliens.

4 Competition entries

This section describes first the approaches that tackled the challenge set in the single-
player learning track of the 2017 and 2018 competitions, and then moves to other
approaches.

12



5 - Learning in GVGAI

4.1 Random agent (Sample agents)

A sample random agent, which selects an action uniformly at random at every game
tick, is included in the framework (in both Java and Python) for the purposes of
testing. This agent is also meant to be taken as a baseline: a learner is expected
to perform better than an agent which acts randomly and does not undertake any
learning.

4.2 DRL algorithms (Sample agents)

Using the new GVGAI Gym, Torrado et al. [15] compared three implemented Deep
Reinforcement Learning algorithms of the OpenAI Gym, Deep Q-Network (DQN),
Prioritized Dueling DQN and Advance Actor-Critic (A2C), on eight GVGAI games
with various difficulties and game rules. All the three RL agents perform well on most
of the games, however, DQNs and A2C perform badly when no game score is given
during a game playing (only win or loss is given when a game terminates). These
three agents have been used as sample agents in the learning competition organized
at IEEE CIG 2018.

4.3 Multi-armed bandit algorithm

DontUnderestimateUchiha by K. Kunanusont is based on two popular Multi-Armed
Bandit (MAB) algorithms, ε-Decreasing Greedy Algorithm and Upper Confidence
Bounds (UCB). At any game tick T , the current best action with probability 1− εT
is picked, otherwise an action is uniformly randomly selected. The best action at
time T is determined using UCB with increment of score as reward. This is a very
interesting combination, as the UCB-style selection and the ε-Decreasing Greedy
Algorithm both aim at balancing the trade-off between exploiting more the best-so-
far action and exploring others. Additionally, ε0 is set to 0.5 and it decreases slowly
along time, formalized as εT = ε0−0.0001T . According to the competition setting, all
games will last longer than 2, 000 game ticks, so ∀T ∈ {1, . . . , 2000}, 0.5 ≥ εT ≥ 0.3.
As a result, random decisions are made for approximately 40% time.

4.4 Sarsa

sampleLearner, ercumentilhan and fraBot-RL-Sarsa are based on the State-Action-
Reward-State-Action (Sarsa) algorithm [13]. The sampleLearner and ercumentilhan
use a subset of the whole game state information to build a new state to reduce the
amount of information to be saved and to take into account similar situations. The
main difference is that the former uses a square region with fixed size centered at

13



General Video Game Artificial Intelligence

the avatar’s position, while the latter uses a first-person view with a fixed distance.
fraBot-RL-Sarsa uses Sarsa, and it uses the entire screenshot of the game screen as
input provided by GVGAI Gym. The agent has been trained using 1000 episodes for
each level of each game, and the total training time was 48 hours.

4.5 Q-learning

kkunan, by K. Kunanusont, is a simple Q-learning [13] agent using most of the
avatar’s current information as features, which a few exceptions (such as avatar’s
health and screen size, as these elements that vary greatly from game to game). The
reward at game tick t+ 1 is defined as the difference between the score at t+ 1 and
the one at t. The learning rate α and discounted factor γ are manually set to 0.05
and 0.8. During the learning phase, a random action is performed with probability
ε = 0.1, otherwise, the best action is selected. During the validation phase, the best
action is always selected. Despite it’s simplicity, it won the the first track in 2017.
fraBot-RL-QLearning uses the Q-Learning algorithm. It has been trained using 1000
episodes for each level of each game, and the total training time was 48 hours.

4.6 Tree search methods

YOLOBOT is an adaption of the YOLOBOT planning agent (as described previ-
ously in Chapter 4). As the FM is no more accessible in the learning track, the MCTS
is substituted by a greedy algorithm to pick the action that minimizes the distance
to the chosen object at most. According to the authors, the poor performance of
YOLOBOT in the learning track, contrary to its success in the planning tracks, was
due to the collision model created by themselves that did not work well.

4.7 Other learning agents

One of the first works that used this framework as a learning environment was carried
out by Samothrakis et al. [14], who employed Neuro-Evolution in 10 games of the
benchmark. Concretely, the authors experimented with Separable Natural Evolution
Strategies (S-NES) using two different policies (ε-greedy versus Softmax) and a lin-
ear function approximator versus a neural network as a state evaluation function.
Features like score, game status, avatar and other sprites information were used to
evolve learners during 1000 episodes. Results show that ε-greedy with a linear func-
tion approximator was the better combination to learn how to maximize scores on
each game.

Braylan and Miikkulainen [4] performed a study in which the objective was to
learn a forward model on 30 games. The objective was to learn the next state from the

14



5 - Learning in GVGAI

current one plus an action, where the state is defined as a collection of attribute values
of the sprites (spawns, directions, movements, etc.), by means of logistic regression.
Additionally, the authors transfer the learnt object models from game to game, under
the assumption that many mechanics and behaviours are transferable between them.
Experiments showed the effective value of object model transfer in the accuracy of
learning forward models, resulting in these agents being stronger at exploration.

Also in a learning setting, Kunanusont et al. [9] [10] developed agents that were
able to play several games via screen capture. In particular, the authors employed
a Deep Q-Network in seven games of the framework of increasing complexity, and
included several enhancements to GVGAI to deal with different screen sizes and a
non-visualization game mode. Results showed that the approach allowed the agent
to learn how to play in both deterministic and stochastic games, achieving a higher
winning rate and game score as the number of episodes increased.

Apeldoorn and Kern-Isberner [2] proposed a learning agent which rapidly de-
termines and exploits heuristics in an unknown environment by using a hybrid
symbolic/sub-symbolic agent model. The proposed agent-based model learned the
weighted state-action pairs using a sub-symbolic learning approach. The proposed
agent has been tested on a single-player stochastic game, Camel Race, from the GV-
GAI framework, and won more than half of the games in different levels within the
first 100 game ticks, while the standard Q-Learning agent never won given the same
game length. Based on [2], Dockhorn and Apeldoorn [6] used exception-tolerant Hi-
erarchical Knowledge Bases (HKBs) to learn the approximated forward model and
tested the approach on the 2017 GVGAI Learning track framework, respecting the
competition rules. The proposed agent beats the best entry in the learning competi-
tion organized at CIG 2017 [6], but still performed far worse than the best planning
agents, which have access to the real forward models.

Finally, Justesen et al. [8] implemented A2C within the GVGAI-Gym interface in
a training environment that allows learning by procedurally generating new levels. By
varying the levels in which the agent plays, the resulting learning is more general and
does not overfit to specific levels. The level generator creates levels at each episode,
producing them in a slowly increasing level of difficulty in response to the observed
agent performance.

4.8 Discussion

The presented agents differ between each other in the input game state (JSON string
or screen capture), the amount of learning time, the algorithm used. Additionally,
some of the agents have been tested on a different set of games and sometimes using
different game length (i.e., maximal number of game ticks allowed). None of the

15



General Video Game Artificial Intelligence

agents, which were submitted to the 2017 learning competition, using the classic
GVGAI framework, have used screen capture.

The Sarsa-based agents performed surprisingly bad in the competition, probably
due to the arbitrarily chosen parameters and very short learning time. Also, learning
three levels and testing on two more difficult levels given only 5 min learning time
is a difficult task. An agent should take care of the learning budget distribution and
decide when to stop learning a level and to proceed the next one.

The learning agent using exception-tolerant HKBs [6] learns fast. However, when
longer learning time is allowed, it is dominated by Deep Reinforcement Learning
(DRL) agents. Out of the eight games tested by Torrado et al. [15], none of the tested
three DRL algorithms outperformed the planning agents on six games. However, on
the heavily stochastic game Seaquest, A2C achieved almost double score than the
best planning agent, MCTS.

5 Summary

In this chapter, we present two platforms for the GVGAI learning challenges, which
can be used for testing reinforcement learning algorithms, as well as some baseline
agents. This chapter also reviews the 2017 and 2018 GVGAI learning competitions
organised using each of the platforms. Thanks to the use of VGDL, the platforms have
the potential of designing new games by humans and AIs for training reinforcement
learning agents. In particular, the GVGAI Gym is easy to use to implement and
compare agents. We believe this platform can be used in multiple research directions,
including designing reinforcement learning agents for a specific task, investigating
artificial general intelligence, and evaluating how different algorithms can learn and
evolve to understand various changing environments.

References

1. D. Anderson, M. Stephenson, J. Togelius, C. Salge, J. Levine, and J. Renz, “Deceptive Games,” arXiv
preprint arXiv:1802.00048, 2018.

2. D. Apeldoorn and G. Kern-Isberner, “An Agent-Based Learning Approach for Finding and Exploiting
Heuristics in Unknown Environments,” in COMMONSENSE, 2017.

3. M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning environment: an evalua-
tion platform for general agents,” Journal of Artificial Intelligence Research, vol. 47, no. 1, pp. 253–279,
2013.

4. A. Braylan and R. Miikkulainen, “Object-Model Transfer in the General Video Game Domain,” in
Twelfth Artificial Intelligence and Interactive Digital Entertainment Conference, 2016.

5. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai
Gym,” arXiv preprint arXiv:1606.01540, 2016.

16



5 - Learning in GVGAI

6. A. Dockhorn and D. Apeldoorn, “Forward Model Approximation for General Video Game Learning,”
in Computational Intelligence and Games (CIG), IEEE Conference on, 2018.

7. M. Johnson, K. Hofmann, T. Hutton, and D. Bignell, “The Malmo Platform for Artificial Intelligence
Experimentation,” in IJCAI, 2016, pp. 4246–4247.

8. N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and S. Risi, “Illuminating Gener-
alization in Deep Reinforcement Learning through Procedural Level Generation,” arXiv:1806.10729,
2018.

9. K. Kunanusont, “General Video Game Artificial Intelligence: Learning from Screen Capture,” Master’s
thesis, University of Essex, 2016.

10. K. Kunanusont, S. M. Lucas, and D. Pérez-Liébana, “General Video Game AI: Learning from Screen
Capture,” in 2017 IEEE Conference on Evolutionary Computation (CEC). IEEE, 2017.

11. J. Liu, “GVGAI Single-Player Learning Competition at IEEE CIG17,” 2017. [Online]. Available:
https://www.slideshare.net/ljialin126/gvgai-singleplayer-learning-competition-at-ieee-cig17

12. J. Liu, D. Perez-Liebana, and S. M. Lucas, “The Single-Player GVGAI Learning Framework - Technical
Manual,” 2017. [Online]. Available: http://www.liujialin.tech/publications/GVGAISingleLearning
manual.pdf

13. S. J. Russell and P. Norvig, Artificial Intelligence: a Modern Approach. Malaysia; Pearson Education
Limited,, 2016.

14. S. Samothrakis, D. Perez-Liebana, S. M. Lucas, and M. Fasli, “Neuroevolution for General Video Game
Playing,” in Conference on Computational Intelligence and Games (CIG). IEEE, 2015, pp. 200–207.

15. R. R. Torrado, P. Bontrager, J. Togelius, J. Liu, and D. Perez-Liebana, “Deep Reinforcement Learning
in the General Video Game AI framework,” in IEEE Conference on Computational Intelligence and
Games (CIG), 2018.

17

https://www.slideshare.net/ljialin126/gvgai-singleplayer-learning-competition-at-ieee-cig17
http://www.liujialin.tech/publications/GVGAISingleLearning_manual.pdf
http://www.liujialin.tech/publications/GVGAISingleLearning_manual.pdf

