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1 Introduction

Multiple studies have tackled the problem presented in the planning track of GV-
GAI. This chapter aims to present the state-of-the-art on GVGAI, describing the
most successful approaches on this domain in Section 2. It is worth highlighting that
these approaches are based on different variants of tree search methods, predomi-
nantly MCTS (see previous chapter), with the addition of several enhancements or
heuristics. These agents submitted to the competition have shown the ability of play-
ing multiple games minimizing the amount of game-dependent heuristics given, truly
reflecting the spirit of GVGAI.

It is important to observe and analyze these methods because, despite being the
most proficient ones, they are still far from an optimal performance on this problem.
On average, these approaches achieve around 50% of victory rate on games played.
From the study of the limitations of these methods one can build stronger algorithms
that tackle this challenge better. Section 3 summarizes the open challenges that must
be faced in order to make progress in this area.

One of the most promising options is to automatically extract information from
the game played in an attempt to understand it. Different games may benefit from
distinct approaches, and being able to identify when to use a determined algorithm or
heuristic can provide a big leap forward. In a similar vein, being able to understand
the situation of the agent in the game (i.e. is the agent on the right track to win?) can
provide automatic guidelines as to when to change the playing strategy. Section 4
of this chapter describes our approach to predict game outcomes from live gameplay
data [8]. This is meant to be another step towards a portfolio approach that improves
the state of the art results in the planning challenge of general video game playing.

GVGAI planning is a hard problem, and we have reached a point where general
agents can play decently some of the available games. The next step is maybe the
hardest (but arguably the most interesting one): can we automatically analyze games
and determine what needs to be done to win? How can we understand the goals of any
game and how closely is the agent to achieve them? The answers to these questions
may lead to a new generation of general video game playing agents.
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2 State of the art in GVGAI Planning

This section presents three agents that have won several editions of the GVGAI com-
petitions: OLETS, ToVo2 and YOLOBOT. We describe the methods implemented
and the strengths and weaknesses of each approach.

2.1 OLETS (adrienctx)

Open Loop Expectimax Tree Search (OLETS) is an algorithm developed by Adrien
Couëtoux for GVGAI that won the first edition of the single-player GVGAI com-
petition. Furthermore, its adaptation to the 2-player planning track [4] was also
successful at winning two editions of such track (see Chapter 2).

OLETS takes its inspiration from Hierarchical Open-Loop Optimistic Planning
(HOLOP, [20], which is uses the Forward Model (FM) to sample actions in a similar
way to MCTS, without ever storing the states of the tree in memory. Although this is
not an optimal approach for non-deterministic domains, it works well in practice. One
key difference with HOLOP is that OLETS does not use the default UCB policy for
action selection but a new method called Open Loop Expectimax (OLE). OLE uses
rM(n) instead of the average of rewards in the policy, which is the linear combination
of two components: the empirical average reward computed from the simulations that
went through the node n and the maximum rM value among its children. Another
key difference is that OLETS does not perform any rollouts. Equation 1 shows the
OLE score, where ns(n) is the number of times the state s has been visited and ns(a)
the number of times action a has been chosen from state s.

score = rM(a) +

√
ln(ns(n))

ns(a)
(1)

Algorithm 1 describes OLETS in detail. OLETS tries to reward exploration of
the level via a taboo bias added to the state value function. When new nodes are
added to the tree, their state receives a penalty (of an order of magnitude smaller
than 1) if it has been visited previously less than T steps ago. Values of 10 < T < 30
has shown to provide good empirical results.

One of the weaknesses of OLETS is the absence of learning. It’s a very simple
and flexible method that gives the agent good reactive capabilities, mainly due to
the open-loop search (in contrast to closed-loop that stores the states of the games
in the node). However, it struggles in games where long computations are needed to
solve a game that requires a deeper planning.
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Algorithm 1 OLETS, from [13]. ns(n): number of simulations that passed through
node n; ne(n): number of simulations ended in e; Re(n): cumulative reward from
simulations ended in n; C(n): set of children of n; P (n): parent of n.

Input: s: current state of the game.
Input: T : time budget.
Output: action: to play by the agent in the game.

1: function OLETS(s, T )
2: T ←root initialize the tree
3: while elapsed time < T do
4: RunSimulation(T , s)

5: return action = arg maxa∈C(root) ns(a)

6:
7: function RunSimulation(T , s0)
8: s← s0 set initial state
9: n←root(T ) start by pointing at the root

10: Exit←False
11: while ¬Final(s) ∧ ¬Exit do
12: if n has unexplored actions then
13: a←Random unexplored action
14: s←ForwardModel(s,a)
15: n←NewNode(a,Score(s))
16: Exit←True
17: else
18: a← arg maxa∈C(n)OLE(n,a) select a branch with OLE (Equation 1)
19: n← a
20: s←ForwardModel(s,a)

21: ne(n)← ne(n) + 1
22: Re(n)← Re(n) + Score(s)
23: while ¬P (n) = ∅ do
24: ns(n)← ns(n) + 1 update the tree

25: rM (n)← Re(n)
ns(n)

+ (1−ne(n))
ns(n)

maxc∈C(n) rM (c)

26: n← P (n)

2.2 ToVo2

The ToVo2 controller is an agent developed by Tom Vodopivec and inspired in MCTS
and Reinforcement Learning [16]. ToVo2 was the first winner of the 2-player GVGAI
planning competition.

ToVo2 enhances MCTS by combining it with Sarsa-UCT(λ) [17] to combine the
generalization of UCT with the learning capabilities of Sarsa. The algorithm is also
an open-loop approach that computes state-action values using the FM during the
selection and simulation phases of MCTS. Rewards are normalized to [0, 1] to combine
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the UCB1 policy with Sarsa. Other parameters are an exploration rate C =
√

2, a
reward discount rate γ = 0.99 and the eligibility trace decay rate λ = 0.6.

The simulation step computes the value of all states visited, instead of only ob-
serving the state found at the end of the rollout. This value is calculated as the
difference in score between two consecutive game ticks. All visited nodes in an iter-
ation are retained and 50% of knowledge is forgotten after each search due to the
updated step-size parameter. The opponent is modeled as if it were to move uniformly
at random (i.e. it is assumed to be part of the environment).

Two enhancements for the MCTS simulation phase augment the controller. The
first one is weighted-random rollouts, which bias the action selection to promote ex-
poration and visit the same state again less often. The second one is a dynamic rollout
length, aimed at an initial exploration of the close vicinity of the avatar (starting
with a depth of 5 moves from the root) to then increase the depth progressively (by
5 every 5 iterations, up to a maximum of 50) to search for more distant goals.

Similar to OLETS, ToVo2 struggles with games that see no rewards in the prox-
imity of the player, but it is robust when dealing with events happening in its close
horizon. In games where the exploration of the level is desirable, the weighted-random
rollouts proved to be beneficial, but if offered no advantage in puzzle games where
performing an exact and particular sequence of moves is required.

2.3 YOLOBOT

A submitted agent that is worth discussing is YOLOBOT, which won three edi-
tions of the GVGAI single-player planning track (outperforming OLETS in them).
YOLOBOT was developed by Tobias Joppen, Miriam Moneke and Nils Schröder,
and its full description can be found at [10].

YOLOBOT is a combination of two different methods: a heuristic-guided Best
First Search and MCTS. The former is used in deterministic games, while the latter
is employed in stochastic ones. The heuristic search attempts to find a sequence of
moves that can be replicated exactly. At the start, the agent returns the NIL action
until this sequence is found, a limit of game ticks is reached or the game is found to
be stochastic. In the latter case, the agent switches to an enhanced MCTS to play
the game. This algorithm is enhanced in several ways.

– Informed priors: YOLOBOT keeps and dynamically updates a knowledge base
with predictions about events and movements within the game. This knowledge
base is used in an heuristic to initialize the UCT values for non-visited nodes,
biasing MCTS to expand first through those actions that seem to lead to more
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promising positions. These values are disregarded as soon as MCTS starts a sim-
ulation from them.

– Informed rollout policies: the same heuristic used to find promising positions is
employed to bias action selection during the simulation phase of MCTS.

– Backtracking: when finding a losing terminal state, the algorithm backtracks one
move and simulates up to four alternative actions. If one of these alternative moves
leads to a non-losing state, the value of this one is backpropagated instead.

– Pruning of the search space: the FM is used to determine if the next state of s
when applying action a is the same as the state reached when NIL is played. In
this case, all actions a that meet this criteria are pruned. Other actions leading
the avatar outside the level bounds and those that lead to a losing game state are
also pruned.

YOLOBOT has achieved the highest win rate in GVGAI competitions since its
inception. This agent works well in deterministic games (puzzles) where the solution
is reachable in a short to medium-long sequence of actions, and it outperforms the
other approaches when playing stochastic games. This, however, does not mean that
YOLOBOT excels at all games. As shown in Section 2, YOLOBOT has achieved
between 41.6% and 63.8% of victories in different game sets of the framework. There
is still about 50% of the games where victory escapes even to one of the strongest
controllers created for this challenge.

3 Current Problems in GVGAI Planning

Both planning tracks of GVGAI (single and 2-player) have received most attention
since the framework was built and made public. As hinted in the previous section and
shown in Chapter 2, the best approaches do not achieve a higher than 50% winning
rate. Furthermore, many games are solved in very rare cases and the different MCTS
and RHEA variants struggle to get more than 25% of victories in all (more than
100) games of the framework. Thus, one of the main challenges at the moment is to
increase the win percentage across all games of the framework.

A recent survey [14] of methods for GVGAI describes many enhancements for
algorithms that try to tackle this issue. In most cases, including the ones described
in this book, the improvements do achieve to increase performance in a subset of the
games tried, but there is normally another subset in which performance decreases or
(in the best case) stays at the same level. The nature of GVGP makes this under-
standable, as it is hard to even think of approaches to work well for all games - but
that does not mean this is not a problem to solve.
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This recent survey shows, however, a few lines of work that could provide sig-
nificant advances in the future. For instance, it seems clear that feature extraction
from sprites work better if using a more sophisticated measure (not only a straight-
forward A*, but also other methods like potential fields [3]) than simple Euclidean
distances. How to combine this more complex calculations with the real-time aspect
of the games, especially in those games where a wise use of the budget is crucial, is
still a matter for future investigation.

The wise use of the budget time is an important point for improvement. There is
a proliferation of methods that try to use the states visited with the FM during the
thinking time to learn about the game and extract features to bias further searches
(as in [12] and [10]). In most cases, these approaches work well providing a marginal
improvement in the overall case, but the features are still tailored to a group of games
and lack generality. Put simply, when researchers design feature extractors, they are
(naturally) influenced by the games they know and what is important in them, but
some other games may require more complex or never-thought-before features. The
design of an automatic and general feature extractor is one of the biggest challenges
in GVGP.

Another interesting approach is to work on the action space to use more abstract
moves. This can take the for of macro-actions (sequences of atomic actions treated
as a whole [15]) or options (in MCTS [19], associated to goals). This approach makes
the action space coarser (reduces the action space across several consecutive turns)
and maximizes the use of the budget times: once a macro-action starts its execution
(which takes T time steps to finish), the controller can plan for the next macro-action,
counting on T − 1 time steps to complete that search. This can be an interesting
approach for games that require long-term planning, a subset of games that has shown
to be hard for the current approaches. Results of using these action abstractions show
again that they help in some games, but not in others. They also suggest that some
games benefit from different sets of lengths of macro-actions, while other games are
better played with others.

It is reasonable to think that, given that certain algorithms perform better at
some games than others, and some games are played better by different methods, an
approach that tries to automatically determine what is the right algorithm for the
right game should be of great help. In fact, the already discuss YOLOBOT agent
takes a first stab at this, by distinguishing between deterministic and stochastic
games. Game classification [11][1] and the use of hybrids or hyper-heuristic methods
are in fact an interesting area for research. The objective would be to build a clas-
sifier that dynamically determines which is the best algorithm to use in the current
game and then switch to it. Some attempts have been made to classify games using
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extracted features, although the latest results seem to indicate that these classifica-
tions (and the algorithms used) are not strong enough to perform well across many
games.

One interesting direction that we start exploring in the next chapter is the use of
more general features, focused on how the agent experiences the game rather than
features that are intrinsic to it (and therefore biased). The next study puts the first
brick in a system designed to switch between algorithms in game based only on agent
game-play features. In particular, the next section describes how a win predictor can
be built to determine the most likely outcome of the game based on agent experience.

4 General Win Prediction in GVGAI

The objective of this work is to build an outcome predictor based only on measure-
ments from the agent’s experience while playing any GVGAI game. We purposefully
left game-related features (like the presence of NPCs or resources) outside this study,
so the insights can be transferred to other frameworks or particular games without
much change. The most important requirements are that the game counts on a For-
ward Model (FM), a game score and game end states with a win/loss outcome.

4.1 Game Playing Agents and Features

The first step for building these predictors is to gather the data required to train the
predicting models. This data will be retrieved from agents playing GVGAI games.
The algorithms used will be as follows.

Random Search (RS) The RS agent samples action sequences at random of length
L until the allocated budget runs out. Then, the first action of the best sequence is
played in the game. Sequences are evaluated using the FM to apply all actions from
the current game state and assigning a value to the final state following Equation 2.
H+ is a large positive integer (and H− is a large negative number).

f = score +

{
H+, if loss

H−, if win
(2)

Three configurations for RS are used in this study, according to the value of L:
10, 30 and 90.
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Rolling Horizon Evolutionary Algorithm (RHEA) The RHEA agent (ex-
plained in Chapter 2 is used for this study, using some of the improvements that
have shown to work well in previous studies. The selected algorithm configurations
are:

– Vanilla RHEA [5], the default configuration of the algorithm.
– EA-MCTS [6], in which the original population is seeded by MCTS.
– EA-Shift [7], in which RHEA is enhanced using the Shift Buffer and Monte Carlo

rollouts at the end of the individuals.
– EA-All, which combines EA-Shift with EA-MCTS, for completeness.

For these four variants, two different parameters sets where used: P=2, L=8 and
P=10, L=14, where L is individual length and P population size. Final states are
evaluated using Equation 2.

Monte Carlo Tree Search (MCTS) The vanilla MCTS algorithm is used, using
again Equation 2 to evaluate states reached at the end of the rollouts. 3 parameter
sets were used for MCTS: W=2, L=8; W=10, L=10 and W=10, L=14. W is the
number of MCTS iterations and L the depth of the rollouts from the root state.

All these 14 algorithms were run in the 100 public games of the GVGAI frame-
work, using the 5 levels available per game and 20 repetitions per level. All algorithms
counted on the same budget per game tick to make a decision: 900 calls to the FM’s
advance function. Table 1 summarizes the results obtained by these methods in the
100 games tested.

Each one of these runs produced two log files with agent and game state infor-
mation at every game state. Regarding game, the score at each step and the final
game result (win/loss) are saved. Regarding the agent, we logged the action played
at each game step and the set of features described as follows.

– φ1 Current game score.
– φ2 Convergence: The iteration number when the algorithm found the final

solution recommended and did not change again until the end of the evolution,
during one game step. A low value indicates quick and almost random decisions.

– φ3 Positive rewards: The count of positive scoring events.
– φ4 Negative rewards: The count of negative scoring events.
– φ5 Success: The slope of a line over all the win counts. This count reflects the

number of states which ended in a win at any point during search. A high value
shows an increase in discovery of winning states as the game progresses.
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# Algorithm
Victory Rate

(Standard Error)

1 10-14-EA-Shift 26.02 % (2.11)

2 2-8-EA-Shift 24.54 % (2.00)

3 10-RS 24.33 % (2.13)

4 14-MCTS 24.29 % (1.74)

5 10-MCTS 24.01 % (1.65)

6 10-14-EA-MCTS 23.99 % (1.80)

7 2-8-EA-MCTS 23.98 % (1.73)

8 2-8-EA-All 23.95 % (1.98)

9 8-MCTS 23.42 % (1.61)

10 10-14-RHEA 23.23 % (2.08)

11 10-14-EA-All 22.66 % (2.02)

12 30-RS 22.49 % (2.02)

13 2-8-RHEA 18.33 % (1.77)

14 90-RS 16.31 % (1.67)

Table 1: Victory rate (and standard error) of all methods used in this study across
100 GVGAI games. Type and configuration (rollout length L if one value, population
size P and roll-out length L if two values) are reported.

– φ6 Danger: The slope of a line over all the loss counts. This count grows for
every end game loss found during search. A high value indicates that the number
of losing states increases as the game progresses.

– φ7 Improvement: Given the best fitness values seen since the beginning of the
game, improvement is the slope of a this increment over game tick. A high value
indicates that best fitness values increase as the game progresses.

– φ8 Decisiveness: This is the Shannon Entropy (SE, see Equation 3) over how
many times each action was recommended. In all cases where the feature is cal-
culated as SE, a high value suggests actions of similar value; the opposite shows
some of these actions to be recommended more often.

– φ9 Options exploration: SE over the number of times each of the possible
actions was explored. In this case, this reflects how many times this action was
the first move of a solution at any time during search. A low value shows an im-
balance in actions explored while a high value means that all actions are explored
approximately the same as first moves during search.

– φ10 Fitness distribution: SE over fitness per action.

– φ11 Success distribution: SE over win count per action.

– φ12 Danger distribution: SE over loss count per action.
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H(X) = −
N−1∑
i=0

pilog2pi (3)

Features φ2, φ8, φ9, φ10, φ11 and φ12 compute averages from the beginning of the
game up until the current tick t. Features φ5, φ6, φ11 and φ12 rely on the FM. Data
set and processing scripts have been made publicly available1.

Additionally, features are divided into 3 different game phases : early (first 30%
ticks of the games), late (ticks from the last 70% of the game) and mid-game (ticks
between 30%− 70% of the game). These divisions were used to train different phase
models: early, mid and late game classifiers.

Feature correlation The division in different game stages corresponds to the belief
that different events generally occur at the beginning and end of the game. There-
fore, having models trained in different game phases may produce interesting results.
Figure 1 shows the correlation between features using the Pearson correlation co-
efficient. This compares the the early (left) and late (right) game features showing
small (but existing) differences. For instance, there are higher correlations between
the features located in the bottom right corner in the late game than in the early
game.

Fig. 1: Feature correlation early game (left, 0-30% of all games) and late game (right,
70-100% of all games)

1 https://github.com/rdgain/ExperimentData/tree/GeneralWinPred-CIG-18. The final data is split
over 281,000 files. It took approximately 2.5 hours to generate this database from raw data files, using
a Dell Windows 10 PC, 3.4 GHz, Intel Core i7, 16GB RAM, 4 cores.
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The late game phase also shows an interesting and positive correlation between
convergence (φ2) and danger (φ6). This may suggest that agents take more time to
settle on their final decisions when more possible losses are found within the search.
A positive correlation that is less strong in the late game is that between fitness im-
provement and fitness distribution over the actions, implying that when one action
is deemed significantly better than the rest, it is unlikely for the fitness to improve
further, possibly due to the other actions not being explored further. Finally, a per-
sistent negative correlation exists between convergence and fitness distribution. This
seems to indicate that an agent, when finding an action that is deemed prominently
better than the rest, it is not likely to change its decision.

4.2 Predictive models

For all models trained for this study the data was randomly split in training (80
of the data) and test sets (20). Several classifier models are built using the features
described as input and a win/loss as a label and prediction. Model prediction quality
is reported in this section according to precision, recall and F1 score (Equations 4, 5
and 6, respectively):

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1 = 2 · precision · recall
precision+ recall

(6)

TP stands for true positives (correctly predicted a win), FP stands for false
positives (incorrectly predicted a win) and FN stands for false negatives (incorrectly
predicted a loss). F1 score is the main indicator reported due to the low overall
performance of the general agents (close to 25% win rate in all games) and the high
variety of the GVGAI games.

Baseline Model In order to determine if the models trained are better than a simple
expert rule system, a baseline model was built. In most games (GVGAI and other
arcades), gaining score through the game is typically a good indicator of progression,
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and as such it normally leads to a victory. Equation 7 is a simple model that compares
the count of positive and negative score events.

ŷ =

{
win if φ3 > φ4

lose otherwise
(7)

The performance of this classifier on the test set can be seen in Table 2. It can
be observed that it achieves an an F1-Score of 0.59, despite having a high precision
(0.70). This model is referred to as Rg in the rest of this chapter.

Precision Recall F1-Score Support

Loss 0.83 0.52 0.64 20500

Win 0.35 0.70 0.46 7500

Avg / Total 0.70 0.57 0.59 28000

Table 2: Global rule based classifier report. Global model tested on all game ticks of
all instances in the test set.

Classifier selection - global model In this work, we trained and tested seven
classifiers as a proof of concept for the win prediction task. These classifiers are
K-Nearest Neighbors (5 neighbours), Decision Tree (5 max depth), Random Forest
(5 max depth, 10 estimators), Multi-layer Perceptron (learning rate 1), AdaBoost-
SAMME [21], Naive Bayes and Dummy (a simple rule system, also used as another
baseline). All classifiers use the implementation in the Scikit-Learn Python 2.7.14
library [2]. The parameters not specified above are set to their respective default
values in the Scikit-Learn library.

Performance is assessed using cross-validation (10 folds). The classifiers obtained,
following the same order as above, an accuracy of 0.95, 1.00, 0.98, 0.96, 1.00, 0.95
and 0.66 during evaluation. AdaBoost and Decision Tree achieved very high accuracy
values in validation and test (see Table 3). The rest of the experiments use AdaBoost
as the main classifier (with no particular reason over Decision Trees).

Table 4 shows the importance of teach feature according to AdaBoost. Game
score seems to be, unsurprisingly, the most important feature to distinguish wins
and losses. This is closely followed by the number of wins seen by the agent, the
improvement of the fitness and the measurement of danger. Decisiveness of the agent
seems to have no impact in deciding the outcome of the game, according to the model
trained.
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Precision Recall F1-Score Support

Loss 1.00 0.99 0.99 20500

Win 0.97 0.99 0.98 7500

Avg / Total 0.99 0.99 0.99 28000

Table 3: AdaBoost tested on all game ticks of all instances in the test set.

φ1 0.24 φ2 0.04 φ3 0.08 φ4 0.06

φ5 0.2 φ6 0.1 φ7 0.12 φ8 0

φ9 0.06 φ10 0.02 φ11 0.02 φ12 0.06

Table 4: Importance of features as extracted from the global model.

Model training Predictions were made at three different levels during the game:
early game (first 30% of the game ticks), mid game (30− 70%) and late game (last
30%). The models are trained using the features captured in the game ticks corre-
sponding to each interval in the game. These three models are referred to as Eg, Mg

and Lg, respectively, in the rest of this section.

Trained models were tested by checking their performance on the 20 test games
(also considering the game tick intervals). Training with 10-fold cross-validation pro-
vided 0.80, 0.82 and 0.99 as results for the early, mid and late game predictions,
respectively. Test accuracies are 0.73, 0.80 and 0.99, with F1-Scores of 0.70, 0.80 and
0.99, respectively.

Live play results Our next step was to simulate how the trained models predict
the game outcome live (when an agent is playing). For this, we simulated play by
extracting the features logged by agents in log files for a range of game ticks (T =
{100 · a : ∀ a ∈ [1, 20] : a ∈ N}), all from the beginning of the game until the current
tick tested t ∈ T . We took games played by the 14 algorithms presented above on 20
test games, playing 20 times on each one of their 5 levels. Each model was asked to
predict the game outcome every 100 ticks.

Figures 2 and 3 show the results obtained from this testing. The baseline rule-
based model achieves a high performance in some games, showing to be better than
the trained predictive models (i.e. see Aliens, Defem, Chopper and Eggomania).
These games have plenty of scoring events, thus it is not surprising that the simple
logic of Rg works well in these cases. However, there are other games in which the
trained models perform much better predictions than the baseline (see Ghost Buster,
Colour Escape or Frogs), where the outcome is not significantly correlated with game
score and the simple rule-based prediction is not accurate.
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Fig. 2: Model F1-scores for each game in the test set, averaged over up to 1400 runs,
14 agents, 100 runs per game. Game ticks are displayed on the X axis, maximum
2000 game ticks. Three different predictor models trained on early, mid and late
game data features, as well as the baseline rule-based predictor. If F1-scores were 0
for all models, accuracy is plotted instead. Additionally, win average is reported for
each game. Games from top to down, left to right: Aliens, Boulderdash, Butterflies,
Caky Baky, Chase, Chopper, Colour Escape, Cops, Defem, Deflection, DigDug and
Donkeykong.
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Fig. 3: Model F1-scores for each game in the test set, averaged over up to 1400 runs,
14 agents, 100 runs per game. Game ticks are displayed on the X axis, maximum
2000 game ticks. Three different predictor models trained on early, mid and late game
data features, as well as the baseline rule-based predictor. If F1-scores were 0 for all
models, accuracy is plotted instead. Additionally, win average is reported for each
game. Games from top to down, left to right: Dungeon, Eggomania, Escape, Factory
Manager, Fireman, Frogs, Ghost Buster and Hungry Birds.

It is worthwhile mentioning that the trained models do not follow the expected
curves. One could expect Eg performing better in the early game, to then decrease
its accuracy when the game progresses. Mg could show high performance in the
middle game and Lg offering good predictions only on the end game. However, the
early game predictor has a worst performance compared to the rest (this could be
explained by the lack of information available for this model). The late game model
is very accurate in games with very low win rate (in Fireman, for instance, where Eg

and Mg are predicting wins, yet the overall win rate remains at 0% for this game).
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A high F1-score index indicate that the predictors are able to judge correctly
both wins and losses. It is therefore interesting to pay attention to those games, like
Defem and Ghost Buster, with close to 50% win rate. In these cases, F1-scores over
0.8 are achieved when only half the game has passed. The middle model Mg provides
very good results in this situations, becoming the best predictor to use in this case
and possibly the best one to use.

It is remarkable to see that the model is able to predict, half-way through the
game (and sometimes just after only a fourth of the game has been played), the
outcome of the game, even if games are won or lost with the probability as a coin
flip. These models are general: they have been trained in different games without
relaying in game-dependent features - just agent experience measurements.

Therefore, there is a great scope of using these predictors as part of a hyper-
heuristic system. Some of the algorithm tested in this study do win at these 50%
win rate games like Defem or Ghost Buster and finding a way to use the appropriate
method for each game would boost performance in GVGAI. Such system would need
to count on an accurate win prediction model (to know if switching to a different
method is required) and a second model that determines which is the best method
given the features observe (to know what to change to).

Table 5 summarises the F1-scores of the three models on the different game phases
identified over all games. Results shown in this table indicate that the rule-based
model provides a consistent performance in all game phases. It is better than the
others in the early phase (F1-score of 0.42). However, in the middle and late game
phases, Mg is significantly better than all the others (F1-scores of 0.57 and 0.71,
respectively). Over all games and phases, the middle game Mg model is the best one
with an average F1-score of 0.53. Mg is the strongest model in the individual mid and
late phases, only overcome by the simple rule predictor (which incorporates human
knowledge as it considers that gaining score leads to a victory) in the early game
phase.

Early-P Mid-P Late-P Total-M

Eg 0.22 (0.72) 0.42 (0.74) 0.49 (0.76) 0.38 (0.74)

Mg 0.29 (0.72) 0.57 (0.79) 0.71 (0.83) 0.53 (0.78)

Lg 0.01 (0.73) 0.05 (0.74) 0.22 (0.76) 0.09 (0.74)

Rg 0.42 (0.67) 0.47 (0.61) 0.46 (0.58) 0.45 (0.62)

Total-P 0.24 (0.71) 0.38 (0.72) 0.47 (0.73)

Table 5: F1-Scores each model per game phase over all games, accuracy in brackets.
Each column is a game phase, each row is a model. Highlighted in bold is the best
model on each game phase, as well as overall best phase and model.
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Finally, in order to test the robustness of the predictions, we play-tested the test
games with MCTS while using the models trained with RHEA. The agent experience
features extracted from an MCTS agent are fed into the prediction models trained
with a different algorithm. Figure 4 shows a comparison between this testing and the
previous one. On the left, the model being used by an MCTS agent. On the right,
when played with the RHEA and RS variants. As can be seen, all models behave
similarly in the different stages of the game and are able to accurately predict the
game outcome half-way through it.

Fig. 4: F1-scores achieved in the game Ghost Buster, trained (in 80 training games)
with RHEA and RS and tested (on 20 test games) with MCTS (left) and RHEA
(right).

Next Steps As mentioned before, a logical next step would be to build a hyper-
heuristic GVGAI agent that can switch between algorithms, in light of the predic-
tions, when playing any game. Identifying which is the algorithm to switch to can
be decomposed in two sub-tasks: one of them signalling which feature measurements
need to change and the other identifying which agent can deliver the desired new
behaviour.

Regarding the first task, it is possible to analyze how the different features influ-
ence each task. Figure 5 shows an example of the prediction given by the three models
at game tick 300 in Frogs (level 0, played by 2-8-RHEA). As can be seen, different
features indicators are highlighted for each model, signaling which features are re-
sponsible for the win or loss predictions. It is possible that a hyper-heuristic method
that makes uses of this analysis could determine the reasons for the predictions of
the models.
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Fig. 5: Class predictions by features (LIME system2). Red signifies the model feature
recommends a loss, green a win. The probability of class being selected based on
individual feature recommendation is plotted on the X-axis.

Finally, the model could be enhanced with deep variants and more features, such
as empowerment [9], spatial entropy or characterization of agent surroundings [18].
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