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1 Introduction

This chapter focuses on AI methods used to tackle the planning problems generated
by GVGAI. Planning problems refer to creating plans of action so as to solve a given
problem; for example, figuring out how to first pick up a key and use it to open the
exit door of a level while avoiding enemies, in an adventure game like Zelda. For this
purpose, a model of the environment is available to simulate possible future states,
when given a current state and an action to be taken by the player; this model will
be referred to as a Forward Model (FM) from now on. Not all modern and complex
games may have an FM available, an issue addressed in the Learning track of the
framework, see Chapter 5. However, using the game engine to not only run the game,
but also allow AI players to simulate states internally, is possible in many games and
inherent to human intuition and processing of different scenarios. Creating a plan,
imagining what may happen if that plan is executed and figuring out the best course
of action is one method for human decision making which is widely applicable to
a range of problems. Therefore, landing this ability to AI to reason in interesting
scenarios, such as those depicted by GVGAI games, would take the technology one
step closer to general intelligence.

In this chapter we explore several methods which apply and extend on this theory.
Monte Carlo Tree Search (MCTS) and Rolling Horizon Evolutionary Algorithms
(RHEA) are the foundations on which most planning AI agents are built, featuring
two different approaches: the first builds a game tree out of possible game actions
and game states, from which it extracts statistics to decide what to do next in
any given state; the second creates entire plans and uses evolutionary computation
to combine and modify them so as to end up with the best option to execute in
the game. These basic methods can be extended in several ways: knowledge learned
about the environment can be imbued into the algorithm to better inform action plan
evaluation, as well as other heuristics which allow the AI to make better than random
decisions in the absence of extrinsic reward signals from the game. Additionally,
GVGAI problems can be seen as multi-objective optimisation problems: the scoring
systems in the game may be deceptive and the AI would need to not only focus
on gaining score (as in traditional arcade games), but also on solving the problem
and winning the game, possibly even considering time constraints. Furthermore, the

1



General Video Game Artificial Intelligence

extensive research in Evolutionary Algorithms can be applied to RHEA methods for
better results, for example by seeding the initial population with better than random
action plans, by keeping a statistical tree similar to the approach taken by MCTS,
by using statistics for modifying action plans, by keeping action plans in-between
game ticks instead of starting from scratch every time or by dynamically modifying
the action plan length depending on features of the current game state (i.e. exploring
further ahead rewards vs. gathering enough statistics about close rewards to make
informed decisions).

All of these enhancements are described in detail in the following sections of
this chapter. In all experiments we compare the enhanced algorithms performance
against the vanilla version as well as against other methods (i.e. RHEA vs MCTS)
to explore whether the modifications proposed improve upon the basic algorithm, as
well as whether the new algorithm is able to compete with the state of the art and
obtain better performance. The methods are tested on a subset of GVGAI games
selected for the particular experiments, with the aim of either tackling specific game
types or obtaining a diverse set of games proposing different types of challenges. All
agents have 40ms of decision time in the competition setting, and the works described
here have normally respected this budget. In some cases, due to testing performed in
multiple machines, an architecture-independent approach has been followed to avoid
undesired bias in the experiments: instead of using time as budget, a maximum
number of calls to the advance function of the FM is established.

This chapter is divided into four sections. Section 2 describes Monte Carlo Tree
Search (MCTS), followed by two sections showing some interesting variants for
GVGAI (Knowledge-based and Multi-objective MCTS in sections 3 and 4, respec-
tively). Finally, Section 5 explores the use of Rolling Horizon Evolutionary Algo-
rithms (RHEA) and several enhancements.

2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a tree search algorithm initially proposed in
2006 [3,4,16]. Originally, it was applied to board games and is closely associated with
Computer Go, where it led to a breakthrough in performance [17] before the irruption
of deep learning and AlphaGo. MCTS is especially will suited for large branching
factor games like Go, and this lead to MCTS being the first algorithm able to reach
professional level play in the 9 × 9 board size version [10]. MCTS rapidly became
popular due to its significant success in this game, where traditional approaches had
been failing to outplay experienced human players.
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MCTS has since then been applied to a wide range of games, including games
of hidden information, single-player games and real-time games. MCTS has also
been used extensively in general game playing (GGP) [5] with very good results. An
extensive survey that includes a description of MCTS, a complete collection of MCTS
variants, and multiple applications of this algorithm to games and other domains,
can be found at [2].

The algorithm builds a search tree that grows in an asymmetric manner by adding
a single node at a time, estimating its game-theoretic value by using self-play from
the state of the node to the end of the game. Each node in the tree keeps certain
statistics that indicate the empirical average (Q(s, a)) of the rewards obtained when
choosing action a at state s, how often a move a is played from a given state s
(N(s, a)) and how many times a state s has been visited (N(s)). The algorithm
builds the tree in successive iterations by simulating actions in the game, making
move choices based on these statistics.

Each iteration of MCTS is composed of several steps [11]: Tree selection, Ex-
pansion, Simulation and Backpropagation. Figure 1 depicts these four steps in the
algorithm.

Fig. 1: MCTS algorithm steps [2]: Selection, Expansion, Simulation and Backprop-
agation are executed iteratively until the allocated budget expires (time, iterations,
or uses of the Forward Model.)

At the start, the tree is composed only of the root node, which is a representation
of the current state of the game. During the selection step, the tree is navigated
from the root until a maximum depth or the end of the game has been reached. In
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this stage, actions are selected using a multi-armed bandit policy (tree policy) and
applying it to the FM.

Multi-armed bandits is a known problem that features a slot machine with mul-
tiple arms. When an arm is pulled, a reward r is received drawn from an unknown
probability distribution. The objective is to minimise the regret (or maximise the
cumulative reward) when pulling from the different arms in sequence. In this sce-
nario, regret is defined as the opportunity loss when choosing a sub-optimal arm.
Good policies in this problem select actions by balancing the exploration of available
arms and the exploitation of those that provided better rewards in the past. Auer et
al. [1] proposed the Upper Confidence Bound (UCB1, see Equation 1) policy for arm
bandit selection, and Kocsis and Szepesvári applied it later for tree search (UCT:
Upper Confidence Bound for trees) [16].

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
(1)

The objective is to find an action a that maximizes the value given by the UCB1
equation. Q(s, a) is the exploitation term, while the second term (weighted by the
constant C) is the exploration term. The exploration term relates to how many
times each action a has been selected from the given state s, and the amount of
selections taken from the current state (N(s, a) and N(s), respectively). The value
of C balances between exploration and exploitation. If the balancing weight C = 0,
UCB1 behaves greedily following the action with the highest average outcome so far.
If rewards Q(s, a) are normalized in the range [0, 1], a commonly used value for C in
single-player games is

√
2. The optimal value of C may vary from game to game.

The tree selection phase continues navigating the tree until a node with fewer
children than the available number of actions is found. Then, a new node is added as
a child of the current one (expansion phase) and the simulation step starts. From the
new node, MCTS executes a Monte Carlo simulation (or roll-out; default policy) from
the expanded node. This is performed by choosing random (either uniformly random,
or biased) actions until an end-game state (or a pre-defined depth) is reached, where
the state of the game is evaluated. Finally, during the backpropagation step, the
statistics N(s), N(s, a) and Q(s, a) are updated for each node traversed, using the
reward obtained in the evaluation of the state. These steps are executed in a loop
until a termination criteria is met (such as number of iterations, or when the time
budget is consumed).

Once all iterations have been performed, MCTS recommends an action for the
agent to take in the game. This recommendation policy determines an action in
function of the statistics stored in the root node. For instance, it could return the
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Algorithm 1 General MCTS approach [2].

Input: Current Game State s0
Output: Action to execute by the AI agent this turn.

1: function MCTS Search(s0)
2: create root node v0 with state s0
3: while within computational budget do
4: vl = TreePolicy((v0))
5: ∆ = DefaultPolicy((s(vl))) . s(vl): State in node vl, ∆: reward for state s.
6: Backup((vl, ∆))

7: return a(BestChild((v0)))

8:
9: function TreePolicy(v)

10: while v is nonterminal do
11: if(v not fully expanded)
12: return Expand((v))
13: else
14: v ← UCB1((v)) . Eq. 1.
15: s← f(v(s), a(v))

16: return v
17:
18: function Expand(v)
19: choose a ∈ untried actions from A(s(v)) . A(s(v)): Available actions from state s(v).
20: add a new child v′ to v
21: with s(v′) = f(s(v), a) . f(s(v), a): State reached from s(v) after applying a.
22: return v′

23:
24: function DefaultPolicy(s)
25: while s is non-terminal do
26: choose a ∈ A(s) uniformly at random
27: s← f(s, a)

28: return reward for state s
29:
30: function Backup(v,∆)
31: while v is not null do
32: N(s(v))← N(s(v)) + 1
33: N(s(v), a(v))← N(s(v), a(v)) + 1 . a(v): Last action applied from state s(v).
34: Q(s(v), a(v)) ← Q(s(v), a(v)) +∆
35: v ← parent of v

action chosen more often (a with the highest N(s, a)), the one that provides a highest
average reward (argmaxa∈A(s) Q(s, a)), or simply to apply Equation 1 at the root
node. The pseudocode of MCTS is shown in Algorithm 1.

MCTS is considered to be an anytime algorithm, as it is able to provide a valid
next move to choose at any moment in time. This is true independently from how
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many iterations the algorithm is able to make (although, in general, more iterations
usually produce better results). This differs from other algorithms (such as A* in
single player games, and standard Min-Max for two-player games) that normally
provide the next play only after they have finished. This makes MCTS a suitable
candidate for real-time domains, where the decision time budget is limited, affecting
the number of iterations that can be performed.

The GVGAI Framework provides a simple implementation of MCTS (also referred
to here as sampleMCTS or vanilla MCTS ). In the rest of this book, we refer to
basic methods as “vanilla”, i.e. methods containing the bare minimum steps for
the algorithm, without any enhancements or tailoring for efficiency, performance or
specific cases. In this MCTS implementation, C takes a value of

√
2 and rollout

depth is set to 10 actions from the root node. Each state reached at the end of the
simulation phase is evaluated using the score of the game at that point, normalized
between the minimum and maximum scores ever seen during the play-outs. If the
state is terminal, the reward assigned is a large positive (if the game is won) or
negative (in case is lost) number.

The vanilla MCTS agent performs relatively well in GVGAI games1, but with
obvious limitations given that there is no game-dependent knowledge embedded in
the algorithm. The value function described above is based exclusively in score and
game end state, concepts that are present in all games and thus general to be used
in a GVGP method. The following two sections propose two modifications to the
standard MCTS to deal with this problem. The first one, Knowledge-based Fast
Evolutionary MCTS (Section 3), explores the modification of the method to learn
from the environment while the game is being played. The second one, proposes a
Multi-Objective version of MCTS (Section 4) for GVGP.

3 Knowledge-based Fast Evolutionary MCTS

3.1 Fast Evolution in MCTS

Knowledge-based Fast Evolutionary MCTS (KB Fast-Evo MCTS) is an adaptation
for GVGAI of a previous work by [21], who proposed an MCTS approach that uses
evolution to learn a rollout policy from the environment. Fast Evolutionary MCTS
uses evolution to adjust a set of weights w to bias the Monte Carlo simulations.
These weights are used to select an action at each step in combination with a fixed
set of features extracted for the current game state.

1 See actual results in upcoming sections.
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Each rollout evaluates a single individual (set of weights), using the value of the
state reached at the end as the fitness. The evolutionary algorithm used to evolve
these weights is a (1 + 1) Evolution Strategy (ES). The pseudocode of this algorithm
can be seen in Algorithm 2.

Algorithm 2 Fast Evolutionary MCTS Algorithm, from [21], assuming one roll-out
per fitness evaluation.

Input: v0 root state.
Output: weight vector w, action a.

1: while within computational budget do
2: w = Evo.GetNext()
3: Initialize Statistics Object S
4: vl = TreePolicy((v0))
5: δ = DefaultPolicy((s(vl), D(w)))
6: UpdateStats((S, δ))
7: Evo.SetFitness((w, S))

8: return w = Evo.getBest(), a = recommend((v0))

The call in line 3 retrieves the next individual to evaluate (w), a and the fitness
is set in line 8. The vector of weights w is used to bias the rollout (line 6). For each
state found in the rollout, first a number of N features are extracted (mapping from
state space S to feature space F ). Given a set of available actions A, a weighted sum
of feature values determines the relative strength of each action (ai), as shown in
Equation 2.

Given that actions are weighted per feature, all weights are stored in a matrix W ,
where each entry wij is the weighting of feature j for action i. A softmax function
(see Equation 3) is used to select an action for the Monte Carlo simulation.

ai =
N∑
j=1

wij × fi; (2)

P (ai) =
e−ai∑A
j=1 e

−aj
(3)

The features selected to bias this action selection are euclidean distances from
the avatar to the closest NPC, resource, non-static object and portal. In GVGAI,
it is not possible to determine a feature space a priori (as the same method should
work for any, even unknown, game). In fact, given that these features depend on the
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existence of certain sprites that may appear or disappear mid-game, the number of
N features does not only vary from game to game, but also varies from game step
to game step. Therefore, the algorithm needs to be flexible to adapt the vector of
weights to the number of features at each state.

3.2 Learning Domain Knowledge

The next step in defining KB Fast-Evo MCTS is to add a system that can provide
a stronger fitness function for the individuals being evolved. Given that this fitness
is calculated at the end of a rollout, the objective is to define a state evaluation
function with knowledge items learnt dynamically when playing the game.

In order to build this function, we define knowledge base as the combination of
two factors: curiosity plus experience. For this work, curiosity refers to the discovery
of the consequences of colliding with other sprites, while experience weights those
events that provided a score gain. In both cases, the events logged are those where
the avatar, or a sprite produced by the avatar, collides with another object in the
game for which a feature is extracted (NPC, resource, non-static object and portal).
Each one of these knowledge items keeps the following statistics.

– Zi: number of occurrences of the event i.
– xi: average of the score change, which is the difference between the game score

before and after the event took place. As GVGAI games are quite dynamic,
multiple events happen at the same game tick and it is not possible to certainly
assess which event actually triggered the score change. Therefore, the larger the
number of occurrences Zi, the more precise xi will be.

These two values are updated after every use of the FM in the Monte Carlo
simulation. When the state at the end of the rollout is reached, the following values
are computed.

– Score change ∆R: this is the difference in game score between the initial and final
states of the rollout.

– Curiosity: Knowledge change ∆Z =
∑N

i=1∆(Ki), which measures the change of
all Zi in the knowledge base, for each knowledge item i. ∆(Ki) is calculated as
shown in Equation 4, where Zi0 is the value of Zi at the beginning of the rollout
and ZiF is the value of Zi at the end.

∆(Ki) =

{
ZiF : Zi0 = 0
ZiF

Zi0
− 1 : Otherwise

(4)
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∆Z is higher when the rollouts produce more events. Events that have been rarely
triggered before will provide higher values of ∆Z, favouring knowledge gathering
in the simulations.

– Experience: ∆D =
∑N

i=1∆(Di). This is a measure of change in the distance to
each sprite of type i from the beginning to the end of the rollout. Equation 5
defines the value of ∆(Di), where Di0 is the distance to the closest sprite of type
i at the beginning of the rollout, and DiF is the same distance at the end of the
rollout.

∆(Di) =


1− DiF

Di0
: Zi0 = 0 OR

Di0 > 0 and xi > 0

0 : Otherwise

(5)

Note that ∆D will be higher if the avatar reduced the distance to those sprites
with a positive xi (i.e. provided a bost in score in the past) during the rollout,
apart from reducing the distance to unknown sprites.

Equation 6 describes the final value for the game state and fitness for the individ-
ual being evaluated. This value is ∆R, unless ∆R = 0. When ∆R = 0, none of the
actions during the rollout changed the score of the game, so the value must reflect
the curiosity and experience components. This is done via a linear combination with
weights α = 0.66 and β = 0.33.

Reward =

{
∆R : ∆R 6= 0

α×∆Z + β ×∆D : Otherwise
(6)

Therefore, the new value function gives priority to actions that produce a score
gain. However, when no score gain is achieved, actions that provide more information
to the knowledge base or get the avatar closer to sprites that provide score are
awarded.

3.3 Experimental work

Four different configurations of KB Fast-Evo MCTS have been tested on the 10
games of the first set of GVGAI games. Each game has 5 levels and each level
has been played 5 times, totalling 250 games played for each one of the following
configurations.

– Vanilla MCTS: the sample MCTS implementation from the framework, at the
beginning of this section.
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– Fast-Evo MCTS: Fast Evolutionary MCTS, as per Lucas et al. [21] (adapted
to use a dynamic number of features).

– KB MCTS: Knowledge-based (KB) MCTS as explained in the previous section,
but using uniformly random selection in the rollouts (i.e., no evolution biases the
Monte Carlo simulations).

– KB Fast-Evo MCTS: Version of MCTS that uses both the knowledge base and
evolution to bias the rollouts.

Performance in GVGAI is typically measured in two ways: percentage of games
won and average score achieved in them. It’s worthwhile highlighting that the former
measure is easier to use for comparisons than the later, as each game has a different
scoring system with different bounds and profiles.

Table 1 shows the win percentages achieved by each one of the four algorithm
in the games used for testing. If we observe the total average of victories, KB Fast-
Evo MCTS leads the comparison with 49.2% of games won. All the other variants
achieved rates between 30.8% and 33.2%, showing that the addition of both the
knowledge base and the fast evolution of weights to bias rollouts provides a boost in
performance. However, the addition of any of them separately does not impact the
algorithm significantly.

Game
Vanila
MCTS

Fast-Evo
MCTS

KB MCTS
KB Fast-Evo

MCTS

Aliens 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

Boulderdash 0.0 (0.0) 4.0 (3.9) 28.0 (9.0) 16.0 (7.3)

Butterflies 88.0 (6.5) 96.0 (3.9) 80.0 (8.0) 100.0 (0.0)

Chase 12.0 (6.5) 12.0 (6.5) 0.0 (0.0) 92.0 (5.4)

Frogs 24.0 (8.5) 16.0 (7.3) 8.0 (5.4) 20.0 (8.0)

Missile Command 20.0 (8.0) 20.0 (8.0) 20.0 (8.0) 56.0 (9.9)

Portals 12.0 (6.5) 28.0 (9.0) 16.0 (7.3) 28.0 (9.0)

Sokoban 0.0 (0.0) 0.0 (0.0) 4.0 (3.9) 8.0 (5.4)

Survive Zombies 44.0 (9.9) 36.0 (9.6) 52.0 (10.0) 44.0 (9.9)

Zelda 8.0 (5.4) 20.0 (8.0) 8.0 (5.4) 28.0 (9.0)

Overall 30.8 (2.6) 33.2 (2.7) 31.6 (2.6) 49.2 (3.2)

Table 1: Percentage of victories obtained on each game, standard error between
parenthesis. In bold, those results that are the best ones on each game. Each value
corresponds to the average result obtained by playing that particular game 25 times.

Looking at individual games, it can be seen that, in most games, KB Fast-Evo
MCTS outperforms Vanilla MCTS in victory rate. In some games, the improvement
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Game
Vanila
MCTS

Fast-Evo
MCTS

KB MCTS
KB Fast-Evo

MCTS

Aliens 36.72 (0.9) 38.4 (0.8) 37.56 (1.0) 54.92 (1.6)

Boulderdash 9.96 (1.0) 12.16 (1.2) 17.28 (1.7 16.44 (1.8)

Butterflies 27.84 (2.8) 31.36 (3.4) 31.04 (3.4) 28.96 (2.8)

Chase 4.04 (0.6) 4.8 (0.6) 3.56 (0.7) 9.28 (0.5)

Frogs -0.88 (0.3) -1.04 (0.2) -1.2 (0.2) -0.68 (0.2)

Missile Command -1.44 (0.3) -1.44 (0.3) -1.28 (0.3) 3.24 (1.3)

Portals 0.12 (0.06) 0.28 (0.09) 0.16 (0.07) 0.28 (0.09)

Sokoban 0.16 (0.1) 0.32 (0.1) 0.7 (0.2) 0.6 (0.1)

Survive Zombies 13.28 (2.3) 14.32 (2.4) 18.56 (3.1) 21.36 (3.3)

Zelda 0.08 (0.3) 0.6 (0.3) 0.8 (0.3) 0.6 (0.3)

Overall 9.0 (0.9) 10.0 (1.0) 10.7 (1.0) 13.5 (1.2)

Table 2: Scores achieved on each game, standard error between parenthesis. In bold,
those results that are the best ones on each game. Each value corresponds to the
average result obtained by playing that particular game 25 times.

can be observed as a consequence of adding either a stronger evaluation function
or the fast evolution component (Boulderdash or Zelda, respectively). Although the
addition of both parts also drives the improvement in other games (such as Missile
Command and Chase).

Table 2 shows the average scores achieved by the same methods in these games.
As in the case of the victory rate, KB Fast-Evo MCTS also gets higher total average
score than the other methods, with 13.5±1.2 points versus the range 9 to 11 achieved
by the other algorithms.

As mentioned above, it is more relevant to compare scores on a game by game
basis due to the different score systems employed per game. In this case, KB Fast-Evo
MCTS still outperforms Vanilla MCTS in most games in scores.

It can also be observed in the results that KB Fast-Evo MCTS fails to provide
good results in certain games. Games like Sokoban and Frogs show little or no im-
provement at all. We hypothesize that the reasons for this are varied. One of them
is the use of Euclidean distances for feature extraction. Using distances calculated
by a path-finding algorithm such as A* would be more accurate, but the impact in
the real-time nature of the algorithm would be quite high. Additionally, path-finding
requires the definition of a navigable space, which is hard to describe as a general
concept for any game.

However, it is likely that the major struggle is the relevance of the features taken
for some of the games. For instance, in Sokoban, the avatar must push boxes to win
the game and the orientation in which the box is pushed (and where it is pushed
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from) is relevant. But the features used here do not capture this information, as all
collision events triggered when colliding with a box are treated the same. In other
cases, like in Frogs, a specific sequence of actions must be applied so the avatar crosses
the road without being hit by a truck. However, these sequences are rare - in most
cases they collide with trucks, which ends in a game loss. Therefore the algorithm
rewards not getting closer to these trucks and staying safe without incentives to cross
the road.

4 Multi-Objective MCTS for GVGAI

This section proposes another modification to the MCTS algorithm for real-time
games in which state evaluations consider two objectives instead of one. In GVGAI,
these objectives are to maximize game score (same objective as in the vanilla MTCS
described in Section 2) and to provide an incentive to maximize exploration in the
game level. First, we provide some background in Multi-objective Optimization, to
then describe the Multi-Objective MCTS (MO-MCTS) approach and the experimen-
tal work carried out to test this new algorithm.

4.1 Multi-objective Optimization

An optimization problem is called multi-objective when two or more conflicting ob-
jective functions must be optimized simultaneously. A multi-objective optimization
problem can be defined as:

optimize {f1(x), f2(x), · · · , fm(x)} (7)

subject to x ∈ Ω, with m(≥ 2) conflicting objective functions fi : <n → <. x =
(x1, x2, · · · , xn)T are decision vectors from the feasible region Ω ⊂ <n. Z ⊂ <m is the
feasible objective region. The elements of this region are known as objective vectors,
which consist of m objective values f(x) = (f1(x), f2(x), · · · , fm(x)). Each solution
x results in a set of m different values to be optimized.

One solution x is said to dominate another solution y if and only if:

1. fi(x) is not worse than fi(y), ∀i = 1, 2, . . . ,m; and
2. fj(x) is better than its analogous counterpart in fj(y) in at least one objective
j.

If these two conditions are met, it is said that x ≺ y (x dominates y). This
condition determines a partial ordering between solutions in the objective space. In
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Algorithm 3 Node update in the backpropagation step of MO-MCTS [24].

Input: node current tree node being updated
Input: r reward of the last state evaluation
Input: dominated if r is dominated by a front from the descendants of node

1: function Update(node, r, dominated = false)
2: node.V isits = node.V isits+ 1
3: node.R = node.R+ r !dominated node.P ≺ r
4: dominated = true
5: node.P = node.P ∪ r . P is the Pareto front approximation at each node
6: Update((node.parent, r, dominated))

the case where it is not possible to state that x ≺ y or y ≺ x., it is said that these
solutions are indifferent to each other. Solutions indifferent to each other form part
of the same non-dominated set. A non-dominated set P is said to be the Pareto-set
if there is no other solution in the decision space that dominates any member of P .
The objective vectors of P build a Pareto-front.

One of the most popular methods to measure the quality of a non-dominated set
is the Hypervolume Indicator (HV). This indicator measures both the diversity and
convergence of non-dominated solutions [29]. The HV of a Pareto front P (HV (P ))
is defined as the volume of the objective space dominated by P . The higher the value
of HV (P ) the better the front is, assuming all objectives are to be maximized.

4.2 Multi-objective MCTS

Multi-Objective Monte Carlo Tree Search (MO-MCTS) [24] tackles the problem of
selecting an action with a reduced time budget in an MO setting. The algorithm
requires that a game state is evaluated according tom objectives, returning a vector r.
r is the reward vector to be used in the backpropagation step of MCTS through all the
nodes visited in the last iteration. This vector updates an accumulated reward vector
R and a local Pareto front approximation P at each node. Algorithm 3 describes how
the update of the node statistics in MO-MCTS.

The Pareto front P update (line 5 of Algorithm 3) in a node works as follows: in
the case that r is not dominated by the front, r is added to P . This update considers
that some of the current points in P may leave the set if r dominates any of them.
If r is dominated by P , the front remains unchanged. Note that, if the latter is true,
no further fronts will be changed in all remaining nodes until reaching the root.

Each node can have an estimation over the quality of the reachable states by
keeping its local front P updated. The quality of the front is calculated as the hyper-
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volume HV (P ), which substitutes the exploitation term Q(s, a) in the MO-UCB
equation (8).

a∗ = arg max
a∈A(s)

{
HV (P ) + C

√
lnN(s)

N(s, a)

}
(8)

As the backpropagation step is followed until reaching the root node, it is straight-
forward to see that the root contains the best non-dominated front of the whole
search. Therefore, the root note can also provide information to the recommendation
policy to select an action to play in the game once the budget is over. In MO-MCTS,
the root stores information about which action leads to which point in its own non-
dominated front. Weights can then be defined to determine which point of the front
P at the root is chosen and pick the action that leads to it.

Heuristics for GVGAI This section proposes two heuristics for GVGAI methods,
each one of them will be treated as objectives in the experimental testing for this
approach.

Score (Objective O1) This is the simple heuristic describe above that uses on the
game score and the game end condition: the value of a state is the current score
unless the game is over. In that case, a large integer is added if the game is won (106)
or lost (−106).

Level Exploration (Objective O2) This heuristic computes a value that rewards an
agent that maximizes the number of grid cells visited in the level. Its implementation
is based on pheromone trails and it was first proposed in [26]. The technique works
as follows: the mechanism simulates that the avatar expels pheromones at each game
tick, which spread into nearby cells. Each cell holds a pheromone value pij ∈ [0, 1],
where i and j are coordinates in the level grid. pij is set to decay with time, and the
change of pheromone pij between steps is given by Equation 9.

pi,j = ρdf × ρφ + (1− ρdf )× ρdc × pi,j (9)

ρφ is computed as the sum of pheromone trail in all surrounding cells divided by
the number of neighbouring cells2. ρdf ∈ (0, 1) sets the value of pheromone diffusion
and ρdc ∈ (0, 1) establishes the decay rate of the pheromone value at each frame.
Values that showed good results previously are ρdf = 0.4 and ρdc = 0.99.

2 An edge cell has fewer neighbours.
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This algorithm produces high values of pheromone trail in the close proximity of
the avatar, as well as in positions recently visited. Figure 2 shows an example of how
much pheromone is added to a cell and its neighbours.

Fig. 2: Pheromone diffusion [27]. The avatar is assumed to be located in the central
position, where more pheromone is deposited. The neighbouring cells receive less
pheromone. These values are added to the pheromone previously deposited on each
cell (values always kept ∈ (0, 1).

This heuristic values higher positions where the pheromone value is small, which
rewards agents that maximize the exploration of the level. Thus, the value of the
heuristic is computed as O2 = 1 − pi,j, where i and j are the coordinates of the
avatar in the grid. As in the previous case, a large positive or negative number is
added to O2 if the game is won or lost in a state - otherwise the agent would miss
the opportunity of winning the game or, even worse, lose it in favour of exploring
new positions.

4.3 Experimental Work

Four different MCTS approaches are tested in this study. All these algorithms share
the value of C =

√
2 for the UCB1/MO-UCB Equations (1/8), a limit of 50 iter-

ations per game tick and a simulation depth of 10 moves from the root node. The
experiments were conducted in the games of the first GVGAI set (10 games). Each
approach described above played 100 times each one of the 5 levels, leading to 500
repetitions per game and agent. These approaches are listed next.

– Sample MCTS. The sample MCTS controller included in the GVGAI framework.
The state value function is exactly O1 in this case.
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– Weighted Sum MCTS. A classical alternative to multi-objective approaches is to
combine all the objectives into a linear combination. This implementation uses
the default MCTS, but the state value function is determined as O1×α+O2×β,
with α = β = 0.5.

– Mixed Strategy MCTS. The idea of this approach is to tackle the multi-objective
problem as a mixed strategy [22]. In this setting, each objective O1, O2 is managed
by a different state evaluation function. The algorithm used is still sample MCTS
but, at the beginning of the decision time, a higher-level policy determines which
objective should be considered during that frame. In the experiments described
here, the selection of one or the other is done uniformly at random.

– MO-MCTS. This approach implements the MO-MCTS algorithm described above,
using O1 and O2 as the two objectives to optimize. The recommendation policy
uses a linear combination O1 × α + O2 × β (α = β = 0.5 as in the previous
approaches) to evaluate each member of the Pareto front P owned by the root.
The action that leads to the point with the highest weighed sum is picked to be
played in the game.

Figure 3 shows the win rate of all agents in the games tested. It shows Sample
MCTS and MO-MCTS as the strongest agents of the four, either of them achieving
the highest percentage of victories on each game. MO-MCTS outperforms Sample
MCTS in five games (Aliens, Frogs, Missile Command, Portals and Zelda).

Aliens Boulderdash Butterflies Chase Frogs Missile Command Portals Sokoban Survive Zombies Zelda
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

V
ic

to
ri

e
s

Victories Precentage

Fig. 3: Percentage of victories (with std. error). Four approaches are compared per
game. From left to right: Sample MCTS, Weighted Sum MCTS, Mixed Strategy
MCTS, MO-MCTS. From [27].
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MO-MCTS also achieves the highest win percentage if compared across all games
to the other approaches. Table 3 shows this comparison, which indicates that Sample
MCTS is the second best algorithm in this ranking.

Sample
MCTS

Weighted Sum
MCTS

Mixed Strategy
MCTS

MO-MCTS

% Victories 32.24 (0.67) 29.80 (0.66) 30.51 (0.66) 42.38 (0.70)

Table 3: Win rate achieved across all games in the first GVGAI game set.

Some interesting observations can be made when analyzing the results in a game
per game basis. Aliens, for example, is a game that has traditionally been well played
by Sample MCTS, achieving 100% of victories. This study uses 50 iterations per
method, which approximately halves the budget that 40ms per tick allows for this
game in particular. With this reduction, the performance of Sample MCTS drops,
while MO-MCTS achieves a 99, 80%(0.20) win rate. Another impressive result is the
high victory rate achieved by MO-MCTS in Frogs. This game has always posed many
problems to MCTS approaches (see, for instance, Table 1 from section 2), but MO-
MCTS agent uses the exploration heuristic to find the goal of the level in 86.40%
(1.53) of the games played.

In some cases MO-MCTS achieves worse result than the other algorithms which
seems to indicate that the excessive exploration can be a disadvantage. An example
of this is Survive Zombies. In this game, a good strategy is to find a spot save from
zombies and stay there. An excessive amount of exploration may lead to encounter
more enemies and lose the game.

Not all games are favorable to MO-MCTS, however, and in some cases it is
possible that the excessive exploration is actually a disadvantage. A good example
could be Survive Zombies, where one of the best strategies is to locate a spot in the
level safe from zombies. Exploring the level too much may lead to find more enemies
and therefore to lose the game.

Figures 4 and 5 show the average of scores achieved by all approaches in the 10
games. Attending to this metric, MO-MCTS achieves the highest score in 7 out of
10 games, only beaten or matched by Sample MCTS on the other 3.

Table 4 shows the numerical data of these results.
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Fig. 4: Average of scores (with std. error). Four approaches are compared per game.
From left to right: Sample MCTS, Weighted Sum MCTS, Mixed Strategy MCTS,
MO-MCTS. From [27].

MO-MCTS is significantly better in terms of scores than all approaches in seven
games. It is worthwhile to highlight that MO-MCTS behaves clearly better (both in
victories and in score) than the other multi-objective variants. These results seem to
suggest that using multiple objectives to tackle GVGAI is promising, but the way
these objectives are used is decisive to achieve good results. Combining them in a
linear combination or using them in an alternative manner does not produce as good
results as using the Pareto fronts in MO-MCTS.

Mixed Strategy MCTS does not achieve good results in this study, but a closer
look at them having in mind the way this algorithm operates suggests some inter-
esting insights. This controller spends 50% of its moves only focusing on new places
to move to, without considering the score, and when this happens is determined at
random. This is the only agent studied here that completely ignores the score in half
of its moves. However, Mixed Strategy MCTS is significantly better than Weighted-
Sum MCTS in two games (precisely in terms of score) and no worse in the other
eight. This suggests that mixed strategies can work well in GVGP if objectives are
chosen at the right time, encouraging further investigation on better (i.e. probably
dynamic) balancing of the different objectives while playing.

5 Rolling Horizon Evolutionary Algorithms

Rolling Horizon Evolutionary Algorithms (RHEA) were first introduced by Perez et
al. [23] as an alternative (and potentially better, more adaptive option) to MCTS for
online planning in games. The concept they put forward was a novel usage of EAs
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Fig. 5: Average of scores (with std. error). Four approaches are compared per game.
From left to right: Sample MCTS, Weighted Sum MCTS, Mixed Strategy MCTS,
MO-MCTS. From [27].

for optimisation of sequences (or plans) of actions in games. Therefore, the solution
evolved by the EA is an action sequence of a specific length, which is executed for
evaluation using simulations of a model of the game. This could be seen as similar to
an MCTS rollout, where the final state reached after advancing through the actions
in an individual is evaluated and gives its fitness value.

This technique has slowly become more popular in game AI research. Several
authors applied RHEA to specific games, starting from the single-player real-time
Physical Travelling Salesman Problem in 2013 [23], to a two-player real-time Space
Battle game in 2016 [18], or single-player real-time games Asteroids and Planet Wars
in 2018 [20]. Given that the algorithm performed well when adapted to multiple
specific games, including the challenging multi-agent game Hero Academy [13], it
seemed natural to test its strength in the GVGAI framework. Several works have
been published on such applications in recent years, ranging from analysis of the
vanilla algorithm, to enhancements or hybrids meant to boost performance. These
modifications, which will be described in more detail in the following subsections,
inspired the work to be extended to General Game Playing domains with moderate
success by Santos et al. [28].

5.1 Vanilla RHEA

RHEA in its vanilla form follows several simple steps, at every game tick, as depicted
in Figure 6.
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1. Population initialisation. All P individuals in the population are initialised
as random action sequences of length L at the beginning of a game tick. For
simplification and speed, individuals are represented by sequences of integers,
where each gene can take a value between 0 and A, where A is the maximum
number of available actions in the current game tick. Genes are always kept in
this range through mutation, and are mapped back to game actions at the end of
the evolution.

2. Individual evaluation. All individuals in the population are evaluated to assess
their fitness. The actions in the sequence are executed, in turn, using a game model
for simulations of possible future states given an action. The final state reached is
evaluated with a heuristic H, and the value becomes the fitness of the individual.

3. Order population by fitness.
4. Elitism. The E best individuals are carried forward unchanged to the next gen-

eration.
5. Individual selection. Two parents are selected through tournament. [For P >

1]
6. Offspring generation. The parents are combined through uniform crossover to

create a new individual (genes are randomly selected from the two parents to
form a new individual). [For P > 1]

7. Offspring mutation. The offspring [or the only individual, if P = 1] is uni-
formly randomly mutated (genes are replaced with new random ones, with some
probability M).

8. Repeat steps 5-7 to create a new population of size P .
9. Repeat steps 2-8 for N generations, or as long as the budget allows.

10. Play first action of best individual obtained at the end of the evolution
process.

In GVGAI, vanilla RHEA uses a simple heuristic function H to evaluate game
states, represented by the current game score (which it aims to maximise), to which
a large integer is added if the game state is final and RHEA won, or a large integer
is subtracted if the game state is final and RHEA lost.

Parameter analysis It is natural to notice several parameters in the steps described.
Arguably the most important ones are P , the population size, and L, the length
of the action sequences evolved. It is interesting to note that a popular approach
in RHEA literature is to keep the population size to only 1 individual, turning the
EA into a Random Mutation Hill Climber or (1+1) EA: in this scenario, the one
individual is mutated at every generation and it is kept (and the first is discarded)
if its fitness is better than the first, or discarded otherwise. This leads to a focused
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Fig. 6: Rolling Horizon Evolutionary Algorithm cycle.

fitness increase, with the risk of being stuck in local optima heavily relying on the
chosen mutation operator.

Other parameters (such as elitism E or mutation rate M) can also influence the
behaviour of the algorithm, but research looked in depth at how P and L affect
performance in a set of 20 GVGAI games, when all other parameters are fixed [6].
The values of these parameters were explored within a fixed budget of 480 calls to
the forward model of the games, the average achieved by MCTS in the larger GVGAI
game corpus in the 40ms imposed by the framework for real-time decision making.

If both parameter values are increased so that only one generation can be cre-
ated and evaluated, the algorithm becomes Random Search (RS) - that is, random
action sequences are generated and the first action of the best sequence is played.
No evolution takes place in this scenario.

The study carried out by Gaina et al. [6] found that, generally, the higher the L
and P , the better - even in the extreme case where no evolution takes place. In the
very limited budget, RHEA is unable to evolve better sequences than those randomly
generated by RS, due to the big challenge of exploring quickly a large search space.
In order for RHEA to be able to compete with RS and MCTS, it needs several
enhancements that help it make better use of the budget and therefore search more
efficiently (some will be detailed in the following section). The study does highlight
that, given more budget, RHEA is able to outperform RS - therefore it is indeed
simply a case of fast and efficient evolution being needed.

It is interesting, however, that high population sizes in RHEA lead, on average,
to its ability to outperform MCTS nonetheless. Since most GVGAI competition
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entries (including past winners) are based on MCTS with several modifications, this
is an indication that RHEA-based entries have the potential to be even better and
definitely a viable alternative for general AI.

RHEA with very long sequences was also shown to perform better in [9], when
budget is increased proportionally as well - although going beyond 150 appears to
be detrimental especially in dense reward games.

Although on average more and longer individuals seem better, this does differ
on a game by game basis: for example, in very dense reward games it may be more
beneficial to have shorter individuals, since the reward landscape varies enough in
the short-term for the agent to be able to tell which are good actions and which are
not (although this could affect its performance in deceptive games in which short-
term penalties could lead to greater long-term rewards). The differences in games
seem important enough to warrant research in dynamic parameter adjustment for
better flexibility, possibly in the form of a meta-heuristic that analyses the game
being played (or even more granular, at game state level), and choosing the right
configuration for the given scenario.

A first step in this direction was taken recently by Gaina et al. [9]. The approach
taken in this study is at game state level, analysing the features observed by the
agent about its decision making process in a given state in order to dynamically
adjust the length of the individuals. In this case, only one feature was used, how
flat the landscape fitness looked to the agent after all its simulations, and the length
adjusted as per Algorithm 4, with frequency ω = 15, a lower bound SD− = 0.05
(which indicates the length will be increased if fitness landscape flatness value falls
below this value) and an upper bound SD+ = 0.4 (which indicates the length will
be decreased if fitness landscape flatness value rises above this value). The fitness
landscape is represented by a collection of all fitness values observed during one
game tick; the flatness value then becomes the standard deviation (δ) of all fitness
values. This method therefore tries to adjust the length so that more individuals
can be sampled if the landscape is varied, in order to gather enough statistics to
make correct decisions; or so that long-term rewards can be found more easily with
longer rollouts, if the fitness landscape is flat. It was shown to increase performance
in sparse reward games for MCTS (while not affecting dense reward games), but it
turned out to be detrimental for RHEA and halve its performance instead. This was
thought to be due to the shift buffer enhancement (see next section), which is not
compatible with dynamically adjusted sequence lengths.
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Algorithm 4 Adjusting rollout length dynamically.

Input: t: current game tick
Input: Ld: the fitness landscape (all fitness values) observed in the previous game tick
Input: L: rollout length
Requires: ω: adjustment frequency
Requires: SD−: lower fLd limit for L increase
Requires: SD+: upper fLd limit for L decrease
Requires: MD: rollout length modifier
Requires: MINL: minimum value for L
Requires: MAXL: maximum value for L

1: function DYNLENGTH(Ld, t, L) t mod ω = 0 Ld = null
2: fLd ← SD− . fLd is a measure of the fitness landscape flatness
3: fLd ← δ(Ld) . get standard deviation fLd < SD−
4: L← L+MD fLd > SD+

5: L← L−MD

6: bound(L, MINL, MAXL) . sequence length capped between min and max

7:
8: function BOUND(L, MINL, MAXL) L < MINL

9: L←MINL L > MAXL

10: L←MAXL

11: return L

5.2 RHEA Enhancements

As we’ve seen in the beginning of this section on Rolling Horizon Evolution, vanilla
RHEA does not sample the search space efficiently enough to be able to find good
solutions in the short budget allocated for real-time decision computation. This sub-
section therefore explores ways to improve upon the base algorithm by incorporating
other techniques or even by combining RHEA with other algorithms for interesting
and high-performing hybrids.

Population initialisation A first step towards vanilla RHEA improvement was taken
in a 2017 study by Gaina et al. [7], which looked at the very first step of the algorithm
described in Section 5.1: population initialisation. The theory behind it is that since
RHEA cannot find a good enough solution quickly starting from random individuals,
it would make sense that starting from an initially good solution could lead to better
results.

There are many ways explored in literature to initialise evolutionary algorithms,
although little for the specific application we have at hand here. Kazimipour et al.
[14] present a nice review of such initialisation methods for evolutionary algorithms,
looking at the randomness of the method, its generality or compositionality. Even
though some of the methods described are hinted at working well within general
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settings as proposed in GVGAI, they are also noted to be computationally expensive
and not directly applicable to real-time games. As we are interested in performance
boosts within limited time budgets, these might not be the best option.

Research in the area is encouraged, however, by earlier research in the game
Othello [15], which, even though still not real-time, showed significant improvement
when the EA is initialised with an optimal solution determined by Temporal Differ-
ence Learning.

Following this line of research, [7] use two different algorithms to produce initial
optimal solutions from which to start the evolutionary process: a One Step Look
Ahead greedy algorithm (1SLA, which chooses simply the action which leads to the
next best state in any given state) and MCTS. These algorithms are given a chunk
of RHEA’s thinking budget (half for MCTS, enough to produce one individual for
1SLA) to return one good solution, which becomes the first individual in the popu-
lation. This first solution is then mutated to form the rest of the initial population,
and evolution proceeds as before.

The effects of these seeding options were tested using different values for the P
and L parameters, as these affect not only the number of generations RHEA can
perform, but also how much budget the seeding algorithms have to be allocated in
order to generate a full individual, as well as how much this initial individual is
disturbed (most in high population sizes). Results showed that, generally, MCTS
seeding leads to a significantly better performance, although it is also significantly
worse in four of the games in which MCTS typically performs poorly (although
in this form, MCTS-seeded RHEA still performs better than simply MCTS). This
could indicate that RHEA is unable to change the initial solution provided enough
to fully account for the weaknesses of MCTS, thus higher mutation rates or different
operators could be needed in order to make the best of both algorithms.

The 1SLA seeding appeared to be detrimental in most cases, possibly due to
the fact that RHEA was unable to escape the initial local optima provided through
seeding. There were games, however, where even this method was better than vanilla
RHEA, suggesting that dynamically changing the seeding method depending on game
type (or, as seen before, more granular at state level) could significantly improve
results in specific games, as well as on average.

Bandit-based mutation Since the mutation operator appeared to be one of the prob-
lems in the seeding-based methods described previously, it is natural to explore al-
ternatives. One option that showed promise in other work [19] was a bandit-based
mutation operator: this uses two levels of multi-armed bandit systems, one at in-
dividual level to choose which gene to mutate, and another at gene level to choose
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the new value given to the gene. Both of the systems employ the UCB equation
(Equation 1) with a constant C =

√
2 in order to balance between exploration of

potentially good values and exploitation of known good mutations. The Q(s,a) values
are updated based on the new individual fitness, including the option to revert the
mutation if this proved to be detrimental to the action sequence, aiming to always
improve individuals.

Although this worked in previous applications of the method, it performed very
poorly overall in the tests performed by Gaina et al. [8] on GVGAI games, in most
cases being worse than vanilla RHEA, even when increasing the population size and
individual length to get the best performance out of this hybrid. The bad perfor-
mance is most likely due to the fact that changing one gene in the middle of the
action sequence affects the meaning of the following actions as well - and it could be
that one of the other actions were the ones producing the change in fitness wrongly
attributed to the mutated gene instead - therefore a better calculation of the value of
the mutation could potentially improve the performance of this enhancement. This
focused mutation for improvement also has the potential of getting the algorithm
stuck in local optima.

Statistical tree Similar to the work in [25] which showed promise, it’s possible to
keep more statistics throughout the evolutionary process. Adopting the way MCTS
computes statistics about the actions it explores, but without relying the search on
these statistics (so the search would still be performed by the regular evolutionary
algorithm previously described), is an interesting way of deciding which action to
finally play. This final decision would be based in this case on the action at the root
of the tree with the highest UCB value, instead of the first in the best plan evolved.
Figure 7 shows how the actions would be stored in the statistical tree after every
individual rollout, using the individual fitness to backup the values throughout all
the actions.

This enhancement did work fairly well in the tests in [8], performing the best (and
better than vanilla RHEA) in low configurations for the parameters P and L, thus
when enough individuals were evaluated to build significant statistics in the tree. In
high configurations the algorithm was unable to gather enough statistics, suggesting
it is better to play the first action of the best overall plan evolved instead. This could
suggest further applications in dynamic parameter configuration work: switching this
enhancement on when parameter values are low enough could lead to further boost
in performance (e.g. compared to the work described in [9].

Shift buffer The next enhancement we’re going to discuss is partly related to the
first step of the algorithm as well (population initialisation, that is). We say, partly,
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Fig. 7: RHEA statistical tree steps.

because it does not actually form a new initial population. This is instead a method of
keeping the evolved population of individuals between game ticks, instead of starting
from new random points each time.

A shift buffer refers to the technique through which all individuals in the final
population in one game tick become the individuals in the first population in the next
game tick. However, because the first action in the sequences evolved was played, we
need to shift the search horizon to start from the second action in each individual
and bring them up to date to the current game time. Therefore, the first action in all
individuals is removed, while a new random action is added at the end, in order to
keep the same length of individuals. In order to make sure all actions are still legal
in case a change in the action space occurred during game ticks, any illegal actions
are replaced with new random actions as well.

This enhancement showed promise when applied to MCTS within the context of
the Physical Travelling Salesman Problem [25] and, even though it does not appear
to work as well for MCTS in GVGAI, it does help RHEA make better use of limited
thinking budgets by reusing already evolved populations and getting to improve the
plans further instead of discarding all of its computed information.

In the study by Gaina et al. [8], the addition of this enhancement led to a high
win rate increase (as well as significantly higher scores) over vanilla RHEA in all
configurations. The shift buffer is not the best combination with bandit mutation,
possibly due on one hand to the general poor performance of bandit variations, but
also due to the old statistics used by the bandits to make their recommendations.
The success of this variant encouraged its use in several other works, such as that
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by Santos et al. [28] who use a Rolling Horizon Evolutionary Algorithm with a shift
buffer for General Game Playing, with good results.
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Fig. 8: Win percentage for configuration 10-14. The color bar denotes in how many
unique games row was significantly better than column. Legend: A = Vanilla,
B = EA-roll, C = EA-shift, D = EA-shift-roll, E = EA-tree, F = EA-tree-roll,
G = EA-tree-shift, H = EA-tree-shift-roll, I = MCTS

Monte Carlo rollout evaluation One last enhancement that’s been explored in re-
search [12] involves step 2 of the vanilla RHEA algorithm (individual evaluation)
and is inspired by Monte Carlo rollouts as in MCTS. The idea here is that after
finishing the usual advancing through the actions in the sequence, we add further
horizon to the search with a random rollout of length rL, possibly sampled multiple
times, rN , so that the results are more significant. In this case, the fitness of the indi-

27



General Video Game Artificial Intelligence

vidual is instead given by the average values of states reached after rL more actions
executed at the end of the action sequence, as in Equation 10.

f =

∑rN
n=1 V (sn)

rN
(10)

As opposed to the case where the sequence length L is increased directly, this vari-
ant offers the possibility of exploring more varied (and not fixed) action sequences,
which allows it to find interesting variations in the search space it might not other-
wise. In the study by Gaina et al. [8], rL is given a value as half the length of the
individual (L/2), while rN is tested for different values: 1, 5 and 10. This variant was
tested individually against vanilla RHEA, but also in combination with previously
described enhancements (with the exception of the bandit-based mutation, which
was considered to be performing too poorly to consider for this last experiment).
An overview of these results can be observed in Figure 8; MCTS is also included in
the figure for comparison. A further summary of the best variants obtained in all
configuration of parameters P and L can also be observed in Table 5.

Overall, Monte Carlo rollouts at the end of individual evaluation appeared to
offer a nice boost in performance, especially when combined with a shift buffer,
significantly outperforming vanilla RHEA (likewise, the shift buffer enhancement
is even better if in combination with MC rollouts). As may be expected, however,
MC rollouts work best if P and L are lower, due to the limited budget in higher
configurations that would now have to be split between action sequences and MC
rollouts as well. These computations become fairly expensive as individual length
grows, while still yielding good results.

Regarding rN values, it appeared that 5 was best in many cases. A highlight
of this is given by the variant combining the shift buffer and MC rollouts, which
matches the performance of MCTS when rN = 5.
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7. R. D. Gaina, S. M. Lucas, and D. Pérez-Liébana, “Population Seeding Techniques for Rolling Horizon
Evolution in General Video Game Playing,” in Conference on Evolutionary Computation. IEEE, 2017.

8. ——, “Rolling Horizon Evolution Enhancements in General Video Game Playing,” in 2017 IEEE
Conference on Computational Intelligence and Games (CIG). IEEE, 2017.

9. R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Tackling Sparse Rewards in Real-Time Games with
Statistical Forward Planning Methods,” in AAAI Conference on Artificial Intelligence (AAAI-19),
2019.

10. S. Gelly and D. Silver, “Monte-Carlo Tree Search and Rapid Action Value Estimation in Computer
Go,” Artificial Intelligence, vol. 175, no. 11, pp. 1856–1875, 2011.

11. S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT with Patterns in Monte-Carlo
Go,” Inst. Nat. Rech. Inform. Auto. (INRIA), Paris, Tech. Rep., 2006.
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Game Algorithm Victories (%) τ (Vict.) Scores τ (Score)

G1
A: Sample MCTS 78.00 (1.85) B , C 54.60 (0.39) B

B: Weighted Sum MCTS 64.00 (2.15) Ø 53.91 (0.40) Ø
C: Mixed Strategy MCTS 67.00 (2.10) Ø 54.44 (0.40) Ø

D: MO-MCTS 99.80 (0.20) A , B , C 60.17 (0.50) A , B , C

G2
A: Sample MCTS 0.25 (0.25) Ø 6.83 (0.23) Ø

B: Weighted Sum MCTS 0.00 (0.00) Ø 7.26 (0.26) Ø
C: Mixed Strategy MCTS 0.32 (0.32) Ø 6.76 (0.25) Ø

D: MO-MCTS 0.40 (0.28) Ø 7.53 (0.21) Ø

G3
A: Sample MCTS 98.20 (0.59) B , D 28.88 (0.62) Ø

B: Weighted Sum MCTS 95.00 (0.97) D 28.84 (0.64) Ø
C: Mixed Strategy MCTS 98.00 (0.63) B , D 30.02 (0.66) Ø

D: MO-MCTS 91.40 (1.25) Ø 32.11 (0.72) A , B , C

G4
A: Sample MCTS 3.20 (0.79) B , C 2.47 (0.09) B , C

B: Weighted Sum MCTS 0.00 (0.00) Ø 1.07 (0.06) Ø
C: Mixed Strategy MCTS 0.00 (0.00) Ø 1.37 (0.06) B

D: MO-MCTS 1.80 (0.59) B , C 2.49 (0.09) B , C

G5
A: Sample MCTS 13.60 (1.53) Ø −1.36 (0.05) Ø

B: Weighted Sum MCTS 11.28 (1.47) Ø −1.41 (0.05) Ø
C: Mixed Strategy MCTS 11.20 (1.41) Ø −1.39 (0.05) Ø

D: MO-MCTS 86.40 (1.53) A , B , C 0.75 (0.03) A , B , C

G6
A: Sample MCTS 36.00 (2.15) Ø 0.68 (0.17) Ø

B: Weighted Sum MCTS 40.80 (2.20) Ø 0.86 (0.19) Ø
C: Mixed Strategy MCTS 38.00 (2.17) Ø 0.67 (0.17) Ø

D: MO-MCTS 55.60 (2.22) A , B , C 3.47 (0.21) A , B , C

G7
A: Sample MCTS 15.80 (1.63) Ø 0.16 (0.02) Ø

B: Weighted Sum MCTS 16.40 (1.66) Ø 0.16 (0.02) Ø
C: Mixed Strategy MCTS 14.20 (1.56) Ø 0.14 (0.02) Ø

D: MO-MCTS 41.60 (2.20) A , B , C 0.42 (0.02) A , B , C

G8
A: Sample MCTS 24.60 (1.93) B , C , D 1.28 (0.04) B , C , D

B: Weighted Sum MCTS 16.80 (1.67) Ø 0.81 (0.04) Ø
C: Mixed Strategy MCTS 15.60 (1.62) Ø 0.96 (0.03) B

D: MO-MCTS 15.60 (1.62) Ø 1.09 (0.04) B , C

G9
A: Sample MCTS 41.00 (2.20) D 33.72 (1.31) B

B: Weighted Sum MCTS 38.00 (2.17) D 29.92 (1.14) Ø
C: Mixed Strategy MCTS 42.20 (2.21) D 32.54 (1.23) Ø

D: MO-MCTS 22.20 (1.86) Ø 37.68 (1.21) A , B , C

G10
A: Sample MCTS 5.40 (1.01) Ø 2.26 (0.12) Ø

B: Weighted Sum MCTS 4.20 (0.90) Ø 2.41 (0.13) Ø
C: Mixed Strategy MCTS 7.20 (1.16) B 2.17 (0.12) Ø

D: MO-MCTS 9.00 (1.28) A , B 3.69 (0.14) A , B , C

Table 4: Victory rate and score average (standard error). τ columns indicate signifi-
cant dominance (Wilcoxon signed-rank test, p-value < 0.05) and bold font indicates
dominance over the other three in victories or score. Games listed in the order used
in Figure 3.
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Config. R
Best By F1 Points Best By Win Rate

Algorithm Avg. Wins Algorithm Avg. Wins

1-6
1 EA-shift-roll 38.35 (2.31) EA-tree-shift-roll 38.60 (2.55)
5 EA-shift-roll 40.10 (2.51) EA-shift-roll 40.10 (2.51)
10 EA-shift-roll 39.35 (2.64) EA-shift-roll 39.35 (2.64)

2-8
1 EA-shift-roll 40.35 (2.63) EA-shift-roll 40.35 (2.63)
5 EA-shift-roll 40.75 (2.46) EA-shift-roll 40.75 (2.46)
10 EA-shift-roll 40.20 (2.30) EA-shift-roll 40.20 (2.30)

5-10
1 EA-shift-roll 43.20 (2.43) EA-shift-roll 43.20 (2.43)
5 EA-shift 40.05 (2.50) EA-shift-roll 41.85 (2.42)
10 EA-shift 40.05 (2.50) EA-shift 40.05 (2.50)

10-14
1 EA-shift 39.75 (2.54) EA-shift-roll 42.80 (2.44)
5 EA-shift-roll 42.05 (2.48) EA-tree-shift-roll 42.70 (2.41)
10 EA-shift-roll 42.35 (2.53) EA-shift-roll 42.35 (2.53)

Table 5: The best algorithms (by Formula-1 points and win rate) in all configurations
and rollout repetitions (R), as compared against the other variants in the same
configuration and the same R value (includes variants without rollouts).
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