Chapter 1 - Introduction

Diego Perez-Liebana

The General Video Game Al (GVGAI) framework and its associated competition
have provided to the Al research community with a tool to investigate General Al in
the domain of games. For decades, games have been used as benchmarks to perform
AT research: they are fast and cheap simulations of the real world and (this can’t be
overlooked) they are fun. Soon thereafter, work in games led to establishing com-
parison of Al performance among researchers, which subsequently took investigators
and practitioners to establish competitions around them.

Game-based Al competitions are a very popular and fun way of benchmarking
methods, becoming one of the most central components of the field. Research around
competitions provides a common benchmark in which researchers can try their meth-
ods in a controlled, fair and reliable manner, opening the possibility of comparing
multiple approaches within exactly the same environment. Using games for compe-
titions allows researchers to show the results in a way most people can understand
and interpret, in a domain that is typically challenging for humans as well, helping
raise awareness of Al research among different groups and communities. Either as
vehicles for creating game playing agents or generation of content, participants sub-
mit controllers or generators which are evaluated in the same conditions to proclaim
a winner.

Without any doubt, advances in research have been achieved when working in
one game only (such as Transposition Tables and Iterative Deepening from Chess, or
Monte Carlo Tree Search from Go), but it is also true that an agent that performs
well at one of these contests would likely not perform above chance level in any
of the others (even if the same interface was provided). The initial thought that
an Al that beats humans at Chess would achieve general intelligence needed to be
evaluated again: single-game competitions have the drawback of overfitting a solution
to the game used. Then, the value of the competition as a benchmark for general Al
methods is limited: participants will tend to tailor their approaches to the game to
improve their results. The results of the competition can therefore show the ability
of the contestants to engineer a domain specific solution rather than the quality
of the Al algorithm that drives the competition entry. For example, participants
of the Simulated Car Racing Competition have gotten better at lap times during
the more than five years this contest took place, but the presence of game-specific
engineering arguably made the approaches less general. Transferring the algorithms



General Video Game Artificial Intelligence

and learning outcomes from this competition to other domains has become more and
more difficult. It is sensible to think that a competition designed with this in mind
would allow us to learn more about artificial general intelligence.

The present book details the efforts of GVGAI as a framework (and competition)
designed with the intention of promoting research focused on not one but many
games. This is done in a series of different chapters that cover the distinct angles of
GVGAL

— Chapter 1 (the one you are reading) introduces GVGALI, from its predecessors un-
til its origins, and provides a vision of the uses of this framework and competition
in education, as well as the potential impact it may have in the games industry.

— Chapter 2 describes the Video Game Description Language (VGDL) used to
implement games and levels, as well as how the GVGAI framework works and its
associated competitions are organised.

— The first one of the more technical chapters is number 3, which focuses on the
planning problem tackled in GVGAI In this case, agents are asked to play any
game is given with the aid of a Forward Model (FM), a simulator that allows
agents to play-test moves during their thinking time. The main two methods that
this chapter presents are Monte Carlo Tree Search (MCTS) and Rolling Horizon
Evolutionary Algorithms (RHEA), as well as several enhancements of these.

— The planning problem proposed for GVGAI is the one that has received more
attention. Due to this, Chapter 4 introduces the state-of-the-art controllers that
have achieved better results in the competition during the years. It also discusses
what are the main hazards and open problems of this challenge, to then propose
avenues of future work in this area.

— Chapter 5 discusses the use of GVGAI in a learning setting. In this case, the
game playing agents must learn how to play a given game by repeatedly playing
the same game during a training phase, this time without the aid of a Forward
Model. This chapter describes the particularities of the framework for this end,
as well as its integration with Open Al Gym, facilitating the use of reinforcement
learning algorithms for this challenge.

— GVGALI has also applications in Procedural Content Generation (PCG). The
framework and competition allow the implementation of rule and level generators.
Chapter 6 describes these two aspects of the framework, explaining how can these
generators be created and what are the current approaches in this area.

— Chapter 7 focuses on Automatic Game Tuning within GVGAI. This chapter ex-
plores how VGDL games can be parameterised to form a game space: a collection
of possible variants of the same game that could include hidden gems or a perfect



1 - Introduction

gameplay balance from a design point of view. An evolutionary algorithm (the N-
Tuple Bandit Evolutionary Algorithm; NTBEA) is presented and used to tweak
variables of several games in order to obtain variants that serve a pre-determined
purpose.

— Chapter 8 introduces a new concept to GVGAI, which is the usage of games
and Al agents described in a high-level language that are compatible with games
and agents from GVGAI. This chapter describes what is needed to have games
that support a Forward Model in an efficient way, as well as presenting a common
interface to facilitate the compatibility between systems, illustrated with concrete
examples.

— Finally, Chapter 9 concludes this book by asking "What’s next?’, outlining out-
standing research with the current challenge, but also the possibilities of the
framework and competition to keep proposing new and interesting problems.

This books brings an overall perspective on the motivation, framework, competi-
tion and related research work that forms the GVGAI world. It also provides insights
about how the framework has been used in Education during these years and how
it can be useful for the Games Industry. Last but not least, each technical chapter
proposes, at the end, a series of exercises for those who want to dive deeper in this
framework and the challenges it proposes. All these exercises can also be found at
the book’s website: https://gaigresearch.github.io/gvgaibook/.

1 A Historical View: from Chess to GVGAI

The utilisation of games as benchmarks for Al research is as old as the field itself. Alan
Turing proposed Chess as an Al benchmark and studied how to play this game with
a manual execution of Minimax [3§]. Inaugurated in the 1970s, the World Computer
Chess Championship has systematically compared Al algorithms in this game until
this day [22]. Since IBM’s Deep Blue defeated the best human player at its time,
Garry Kasparov, the championship has continued pitting computer against computer
in a chess Al arms race. Nowadays, we are living through the same history again with
the game Go, after Deepmind’s AlphaGo [35] beat the World Go Champion Lee Sedol
in 2017, or the first Starcraft I professionals in 2019 [3].

Since the start of the 215 century, many competitions and benchmarks for video
games have come to existence. The nature of the games that form the basis of these
competitions is incredibly varied. Some competitions focus on first-person shooter
games, such as Unreal Tournament 2004 [I1] and VizDoom [I3]; platform games such
as Super Mario Bros [37] and Geometry Friends [27]; car racing, such as TORCS [16];

3


https://gaigresearch.github.io/gvgaibook/

General Video Game Artificial Intelligence

classic arcade games, such as Ms. Pac-Man [28] real-time strategy games, such as
StarCraft [24] and Starcraft IT [40]; and navigation problems such as the Physical
TSP game and competition [25]. The large majority of the existent competitions,
however, focus on a single game.

In the study of Artificial General Intelligence (AGI), a predominant idea is that
the intelligence of an agent can be measured by its performance across a large number
of environments. Schaul et al. [32] formalized this idea by arguing that these envi-
ronments could be games sampled from a game space. Game spaces can be defined
via a Game Description Language (GDL) and an engine that parses and executes it
in a playable way.

Many authors have developed GDLs to define at different levels of abstraction.
Examples are the Ludi language for combinatorial board games [2] and the Card
Game Description Language [5]. An overview of several GDLs and representations
for game rules and mechanics can be found in [19].

However, the first attempt at finding a remedy to this problem via a GDL was
done by the Stanford University Logic Group in 2005 [9], when they ran the first Gen-
eral Game Playing Competition (GGP). In this contest, competitors submit agents
that can play a number of previously unseen games, usually turn-based discrete
games or variants of existing board games. Games were described in a GDL [17] and
could be single or two-player deterministic games (Figure (1| shows a few examples
of existing games). GDL is based on first-order logic (syntactically, it’s a version of
Prolog), rather low-level. For instance, the description of a game like Tic-Tac-Toe
is several pages long. GGP agents have approximately 1 second of thinking time to
make a move and the description of the game is given to the players so it can be
analysed.

Fig. 1: Example games from the General Game Playing Competition.



1 - Introduction

Another popular environment is the Arcade Learning Environment (ALE), which
is based on an emulator of the Atari 2600 game console [I]. This collection of video-
games include simple-looking (but some of very high quality, such as Pac-Man or
Space Invaders) games. Two of these games can be seen in Figure .

Fig.2: Example games from the Arcade Learning Environment: Pitfall (left) and
Space Invaders (right).

Agents developed for playing ALE games are meant to be able to play any game
within this framework in real-time, providing actions every few milliseconds. In recent
years, research with this framework has become increasingly popular, especially using
deep learning to train agents that receive the raw screen capture as input, plus a score
counter [18].

In most cases, the algorithms learn to play one ALE game at a time, having to
train again when the environment is different and forgetting what was learnt for the
first game. Multi-task and transfer learning are one of the main focuses of research in
this type of problems at the moment [42]. Due to the nature of the Atari emulator,
all games in ALE are deterministic. This limits the adaptability of the methods
trained to play these games and makes them too brittle when facing changes in the
environment. Additionally, games are loaded via ROMs instead of being defined in
a GDL, so they can’t be modified easily.

Another fruitful area of research for multi-task learning is that of multi-agent.
This domain does not only have the challenge of learning in many games at the same
time, but also dealing with opponent modeling. The Multi-Agent Reinforcement
Learning in MalmO (MARLO) framework and competition is a new challenge that
proposes this type of research in the game Minecraft [26]. The MARLO competition
ran for the first time in November/December 2018 and it proposes multi-task, multi-
agent learning via screen capture through the OpenAl Gym interface. Figure 3| shows
the three games that were used in this challenge.



General Video Game Artificial Intelligence

Fig. 3: MARLO 2018 Competition games. From left to right, Mob Chase (two players
collaborate to catch a mob in a pin), Build Battle (two players compete to build a
structure that matches a model) and Treasure Hunt (where two players collaborate
in collecting treasures in a maze while avoiding enemy zombies).

MARLO proposes a similar task to the one tackled in ALE, but stepping up
the game by using 3D environments and a more general approach. Each one of
these games can be parameterised, so blocks, objects and character appearance can
vary from instance to instance (also known as tasks). Game settings and tasks are
described in XML files and the final rankings of this challenge are computed in task
a priori unknown by the participants.

Ebner et al. [4] and Levine et al. [I5] described the need and interest for a frame-
work that would accommodate a competition for researchers to tackle the challenge of
General Video Game Playing (GVGP). The authors proposed the design of the Video
Game Description Language (VGDL), which was later developed by Schaul [30], [31]
in the Python framework py-vgdl. VGDL was designed so that it would be easy
to create games both for humans and algorithms, eventually allowing for automated
generation of test-bed games. VGDL describes real-time arcade games with stochastic
effects, hidden information and played by an avatar. VGDL is a language that allows
the creation of a potentially infinite number of games in a very compact manner,
describing them in fewer lines than GGP’s GDL and MARLO’s XML format.

VGDL is the base of the General Video Game Al (GVGAI) Framework and Com-
petition, subject of this book. GVGAI was developed as a new iteration of py-vgdl
in Java, exposing an API for agents to play games defined in VGDL. Researchers
should develop their agents without knowing which games would they be playing.
A competition server was made be available so participants could submit their bots
and be evaluated in an unseen set of games. In order to make games more appealing
to human players, a special care was put into providing a nice set of graphics and
sprites within the framework. One of the still standing goals of GVGALI is to be able

6



1 - Introduction

to compare bot and human performance, and even creating environments in which
human and Als can collaborate and compete in GVGP. Figure [4 shows the evolution
of one of the VGDL/GVGAI games, Pac-Man, through the different versions of the

framework.

Java-VGDL: Player0-Score:5.0. Tick:43

Fig. 4: Evolution of Pac-Man in py-vgdl and GVGALI frameworks. From left to right,
Pac-Man in py-vgdl (with coloured squares), initial (with simple sprites) and cur-
rent GVGAI framework (with sprites made by a graphic designelﬂ, with support for
transparencies, animations and background auto-tiling).

Initially, GVGAI was mainly focused on proposing a competition for single-player
game agents, in which controllers have access to the model of the game (albeit not
the VGDL description) promoting research in model-based reinforcement learning al-
gorithms. Shortly after, VGDL was expanded to account for 2-player games, adding
the challenge of opponent player modelling in GVGP planning. The learning track
of the GVGAI competition completes the available settings for general game playing
agents. In this last scenario, no Forward Model is provided, challenging model-free re-
inforcement learning methods that would learn from static game observations, screen
capture, or both.

The framework was also expanded to exploit the versatility of VGDL by proposing
challenges on procedural content generation (PCG). Two extra tracks dedicated to
the generation of game rules and levels for any game within the framework have
been recently created. Another potential use of GVGAI is for game prototyping, and

! Oryx Design Lab, https://www.oryxdesignlab.com/

7


https://www.oryxdesignlab.com/

General Video Game Artificial Intelligence

there is a growing body of research using the framework for game design and the
implementation of mixed-initiative design tools.

GVGALI has been used in multiple research domains, and this is the focus of
the present book. Nevertheless, GVGAI has had an important impact in Education,
being used in undergraduate and master taught modules as assignments, final year
undergraduate and master projects and PhD topics. We also strongly believe that
GVGALI can also have a great impact in the games industry. We conclude this chap-
ter highlighting these impact cases, before diving into the research usages of the
framework and competition.

2 GVGAI in Education

The GVGAI framework has been employed by instructors from many institutions
around the globe to set up engaging assignments in their taught modules. Projects
around the GVGAI framework and competition have been proposed for undergrad-
uate and master thesis and PhD topics. This section describes some of these usages,
although it does not intend to be an exhaustive list.

The GVGALI framework has been used in at least two different ways in taught
modules. The most common usage of the framework is around the game playing
challenge for single and 2-player games. Students are first taught of the main GVGAI
concepts to then explore how Al algorithms can be implemented in an assignment.
These agents, sometimes developed individually and others in groups, participate
in either a private league or in the overall competition. The assignment’s mark can
include how well the entry of each student or group performs in the mentioned league.
The following is a not-exclusive list of the institutions that, in the knowledge of the
authors, have used the GVGAI framework in their taught modules:

— Otto Von Guericke Universitat, Magdeburg, Germany.

— University of Essex, Colchester, United Kingdom.

— University of Muenster, Muenster, Germany.

Universidad Carlos III de Madrid, Madrid, Spain.

— Universidad de Malaga, Malaga, Spain.

New York University, New York, United States.

— Southern University of Science and Technology, Shenzhen, China.
— Nanjing University, Nanjing, China.

Some of these institutions have run private leagues (via the GVGAI website and
serverﬂ). In a private league, the module supervisor has full control over how the

2 fww . gvgai.net


www.gvgai.net

1 - Introduction

league is set up, including when and how students can submit entries, how are these
evaluated, the set of games that are made available for the competition and, in the
2-player track, the available opponents within the league.

The game design and development capabilities of GVGAI have also been used in
taught modules. In this case, VGDL has been explained as a high-level language to
create games in. The objective of the assignments is the design and development of
interesting games, either manually or guided by Al methods. Examples are creation of
new puzzle games or exploring the parameter space of VGDL games (see Chapter 7).
Some of the games created in this module have joined the corpus of VGDL games
in the GVGAI framework. Examples of higher education institutions that have used
the framework in this way are:

— IT University of Copenhagen, Copenhagen, Denmark.
— University of Essex, Colchester, United Kingdom.
— Queen Mary University of London, London, United Kingdom.

Some of the interesting research challenges GVGALI offers have been addressed in
the form of master dissertation projects. Most of these have focused on the planning
tasks (single and 2-player), which is not surprising given that this is the first track
that became available. The GVGALI framework includes sample agents for all tracks,
providing an ideal starting point for these projects. These can be used as baselines for
comparison and/or as a starting point for algorithmic improvements. Our experience
shows that this usage tends to provide an excellent educational experience for the
student.

An illustrative example is the work by Maarten de Waard on Monte Carlo Tree
Search (MCTS) with options, which showed how the use of options in MCTS out-
performed the vanilla method in most of the games studied. This work started as
an master project and was later published as a conference paper [41]. Other uses
of GVGAI games in a planning setting for master thesis GVGAI include other en-
hancements of MCTS [33], real-time enhancements [36], MCTS knowledge-based?
improvements [39] and goal-oriented approaches [29].

Episodic learning from screen capture was the focus of Kunanusont’s master
thesis [14] and the level generation track was the topic of two master projects:
Neufeld [20], who applied Answer Set Programming and was also published in a
relevant conference as a paper [21]; and Nichols [23], who used genetic algorithms for
the first level generation competition. Last but not least, the master project by Gaina
(one of the co-authors of this book) [6] expanded the framework itself to incorporate

3 See Chapter 3 for the Knowledge-Based MCTS method this work is based on.

9



General Video Game Artificial Intelligence

2-player games and run the first 2-player GVGAI competition [7]. This original work
was also published as a paper in a conference [g].

Running the GVGAI competition (and others before) for several years and us-
ing the framework in our own taught modules has shown us that accessibility to a
framework, documentation and the competitive element of competitions can moti-
vate students to learn and propose new ideas for the problems tackled. The objective
of this book is, apart from bringing the latest and most relevant research on GVGALI,
to provide a resource for AI module supervisors with examples of possible projects
for their students. As such, every technical chapter of this book concludes with a list
of proposed exercises for students to attempt. Some of them can be seen as practical
tasks, while others can spark new ideas for research projects at different levels.

3 GVGAI and the Games Industry

The original Dagstuhl report on General Video Game Playing stated that GVGAI
games would have their “unique story and goal which should be achieved by the player.
The method of how the player interacts with the game is the same across all these
games [...]. This will allow us to gain new insights in working towards the holy grail
of artificial intelligence, i.e. development of human-like intelligence” [15]. Although
this may sound like a primarily research focused statement, we claim that research
on General Video Game Playing can be fruitful for the games industry.

Initially, it is sensible to think that no company would include in their games
in development a general agent that can play any game at an average performance
level when they can include ad-hoc bots that fit perfectly the environment they
are supposed to be immersed in. General agents do not necessarily address certain
characteristics that these bots should have.

Namely, Al agents in games need to behave in a specific manner: they need to
accomplish a certain task and do it at the level it is required to in order to provide
a good player experience. They also need to be predictable: within reason, agents
should behave in a way they are designed to. For instance, games where different types
of enemies interact with the player in different ways should be consistent through the
lifetime of the game according to certain design specifications. The player would not
understand how a particular character that behaves, for example, recklessly during
most of the game, exhibits a cautious and planned behaviour without any explainable
reason for it. Finally, Al agents must perform their duties in an efficient manner.
For this, they typically use scripted behaviour, objectives given by a designer and
data structures or object representation built for the game being developed. A general

10



1 - Introduction

agent that aims not to use these resources may not perform as efficiently as one that
does, both in terms of computational cost and actual efficacy of the task at hand.

Before you decide to throw this book to the bin, let us stop here and highlight
why we think research on GVGP can be beneficial for the games industry. One
of the main goals of GVGP (and, by extension, GVGAI) is to advance the state
of the art on general algorithms. For instance, this research aims to improve the
capabilities of algorithms that can work in any game, such as Monte Carlo Tree
Search (MCTS) and Rolling Horizon Evolutionary Algorithms (RHEA). The vanilla
versions of these methods, as used in GVGAI (see Chapter 3), do not incorporate any
domain knowledge of the game. This means the algorithms do not have information
about the goal of the game, the best strategy to win, not even details about what
the game is about or what do other entities in it do. Therefore, we are aiming at
improving the algorithm itself, not how it works in one particular game. We are
focused on deviating the attention from algorithmic improvements in one game to
advances for a broader set of domains. If improving on the reasoning and search
capabilities of an algorithm is beneficial to all games, then it must be a step forward
for any game. By doing this, GVGALI aims to provide a better starting point for those
programmers interested in taking MCTS and adapt it for their particular game(s).

It is important to highlight that, when we refer to agents that play games, we
may not necessarily aim at agents that play those games to win. For instance, agents
could be trained to assist the player in any game within the 2-player GVGAI con-
text, in order to identify behaviours for Non-Player Characters (NPC) via opponent
modeling. But what if the agents are trained to do other things in any game? For in-
stance, a general agent could be aiming at exploring the environment, or interacting
with it, or even finding new and unexpected ways of solving a puzzle or a level. Or
maybe you could have a system of agents in which each one of them is able to play
with a different role [I0]. A system of general agents that can do this could be used
to perform automatic play-testing and Q/A for any game.

We are convinced that, while reading these lines, you are thinking of a particular
game in which this can be applied. It is quite likely that the game you are thinking
of is different to the one other readers have in mind. These ideas still apply, and this
is the case because the concepts mentioned here are general. Could we build such
system that works in many games? Could you then adapt it to work in your game?

One of the many different configurations that an agent could have is to play as
closely as possible as a human would. Creating believable non-player characters is
one of the standing challenges in games research and development [12]. This is a
standing problem for not just one, but multiple games. Research can be focused on
what are the concepts that make bots believable in general. We believe some of these

11



General Video Game Artificial Intelligence

concepts cut across different games, certainly in the same genre. Researching how
an agent can be believable in a group of games will advance the state of the art and
provide valuable insights into how to make believable bots for particular games.

As mentioned above, these general agents can be used for automatic play-testing.
There is only one step from here to build Procedural Content Generation (PCG)
systems. If agents can evaluate games by playing them, they can be incorporated
into an automatic system that generates new content. This approach, known as
Relative Algorithm Performance Profiles (RAPP), is a simulated-based approach
very common in the literature [34]. Generality in Al agents allows for generality in
content generation. A system that is able to generate content (be this levels, mazes,
items, weapon systems, etc.) for any game is given would be rich enough to be
adapted to any particular game and provide a good starting point.

GVGALI takes on the ambitious goal of doing research for many games and from
many different angles. We hypothesise that, by taking a step away from working on
specific games, we are actually improving the state of the art in a way that is more
valuable for more researchers and developers.

References

1. M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning environment: an evalua-
tion platform for general agents,” Journal of Artificial Intelligence Research, vol. 47, no. 1, pp. 253-279,
2013.

2. C. Browne and F. Maire, “Evolutionary Game Design,” IEEE Transactions on Computational Intelli-
gence and Al in Games, vol. 2, no. 1, pp. 1-16, 2010.

3. G. Deepmind, “AlphaStar,” 2019, https://deepmind.com/blog/alphastar-mastering-real-time-strategy-
game-starcraft-ii/.

4. M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and J. Togelius, “Towards a Video Game
Description Language,” Dagstuhl Follow-Ups, vol. 6, 2013.

5. J. M. Font, T. Mahlmann, D. Manrique, and J. Togelius, “A card game description language,” in Ap-
plications of Evolutionary Computing, EvoApplications 2013., ser. LNCS, vol. 7835. Vienna: Springer
Verlag, 3-5 Apr. 2013, pp. 254-263.

6. R. D. Gaina, “The 2 Player General Video Game Playing Competition,” Master’s thesis, University of
Essex, 2016.

7. R. D. Gaina, A. Couétoux, D. J. Soemers, M. H. Winands, T. Vodopivec, F. Kirchgessner, J. Liu,
S. M. Lucas, and D. Perez-Liebana, “The 2016 Two-Player GVGAI Competition,” IEEE Transactions
on Computational Intelligence and Al in Games, 2017.

8. R. D. Gaina, D. Perez-Liebana, and S. M. Lucas, “General Video Game for 2 Players: Framework and
Competition,” in IEEE Computer Science and Electronic Engineering Conference, 2016.

9. M. Genesereth, N. Love, and B. Pell, “General game playing: Overview of the AAAI competition,” Al
Magazine, vol. 26, no. 2, p. 62, 2005.

10. C. Guerrero-Romero, S. M. Lucas, and D. Perez-Liebana, “Using a Team of General AT Algorithms
to Assist Game Design and Testing,” in Conference on Computational Intelligence and Games (CIG),
2018.

11. P. Hingston, “A New Design for a Turing Test for Bots,” in Proceedings of the IEEE Conference on
Computational Intelligence in Games. TEEE, 2010, pp. 345-350.

12



1 - Introduction

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

——, Believable Bots: Can Computers Play Like People? Springer, 2012.

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski, “Vizdoom: A doom-based AI
Research Platform for Visual Reinforcement Learning,” in Conference on Computational Intelligence
and Games. IEEE, 2016, pp. 1-8.

K. Kunanusont, “General Video Game Artificial Intelligence: Learning from Screen Capture,” Master’s
thesis, University of Essex, 2016.

J. Levine, C. B. Congdon, M. Ebner, G. Kendall, S. M. Lucas, R. Miikkulainen, T. Schaul, and
T. Thompson, “General Video Game Playing,” Dagstuhl Follow-Ups, vol. 6, 2013.

D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta, M. V. Butz, T. D. Lonneker, .. Cardamone,
D. Perez, Y. Séez et al., “The 2009 Simulated Car Racing Championship,” IEEE Transactions on
Computational Intelligence and Al in Games, vol. 2, no. 2, pp. 131-147, 2010.

N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth, “General Game Playing: Game
Description Language Specification,” 2008.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

M. J. Nelson, J. Togelius, C. Browne, and M. Cook, “Rules and Mechanics,” in Procedural Content
Generation in Games: A Textbook and an Overview of Current Research, N. Shaker, J. Togelius, and
M. J. Nelson, Eds. Springer, 2014, pp. 97-117.

X. Neufeld, “Procedural level generation with answer set programming for general video game playing,”
Master’s thesis, University of Magdeburg, 2016.

X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “Procedural level generation with answer set pro-
gramming for general video game playing,” in Computer Science and Electronic Engineering Conference
(CEEC), 2015 7th. 1EEE, 2015, pp. 207-212.

M. Newborn, Computer chess. John Wiley and Sons Ltd., 2003.

J. Nichols, “The Use of Genetic Algorithms in Automatic Level Generation,” Master’s thesis, University
of Essex, 2016.

S. Ontanon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss, “A Survey of Real-Time
Strategy Game AI Research and Competition in StarCraft,” IEEE Transactions on Computational
Intelligence and Al in Games, vol. 5, no. 4, pp. 293-311, 2013.

D. Perez, P. Rohlfshagen, and S. M. Lucas, “The Physical Travelling Salesman Problem: WCCI 2012
Competition,” in Proceedings of the IEEE Congress on Fvolutionary Computation. IEEE; 2012, pp.
1-8.

D. Perez-Liebana, K. Hofmann, S. P. Mohanty, N. Kuno, A. Kramer, S. Devlin, R. D. Gaina, and
D. Ionita, “The Multi-Agent Reinforcement Learning in MalmO (MARLO) Competition,” in Challenges
in Machine Learning (CiML; NIPS Workshop), 2018, pp. 1-4.

R. Prada, F. Melo, and J. Quiterio, “Geometry Friends Competition,” 2014.

P. Rohlfshagen and S. M. Lucas, “Ms Pac-Man Versus Ghost Team CEC 2011 Competition,” in Pro-
ceedings of the IEEE Congress on Evolutionary Computation. IEEE, 2011, pp. 70-77.

B. Ross, “General Video Game Playing with Goal Orientation,” Master’s thesis, University of Strath-
clyde, 2014.

T. Schaul, “A Video Game Description Language for Model-based or Interactive Learning,” in IEEE
Conference on Computational Intelligence in Games (CIG), 2013, pp. 1-8.

——, “An Extensible Description Language for Video Games,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, no. 4, pp. 325-331, 2014.

T. Schaul, J. Togelius, and J. Schmidhuber, “Measuring Intelligence through Games,” CoRR, vol.
abs/1109.1314, pp. 1-19, 2011.

T. Schuster, “MCTS Based Agent for General Video Games,” Master’s thesis, Maastricht University,
2015.

N. Shaker, J. Togelius, and M. J. Nelson, Procedural content generation in games. Springer, 2016.

13



General Video Game Artificial Intelligence

35.

36.

37.

38.

39.

40.

41.

42.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of Go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

D. Soemers, “Enhancements for Real-Time Monte-Carlo Tree Search in General Video Game Playing,”
Master’s thesis, Maastricht Univ., 2016.

J. Togelius, N. Shaker, S. Karakovskiy, and G. N. Yannakakis, “The Mario Al Championship 2009-
2012,” AI Magazine, vol. 34, no. 3, pp. 89-92, 2013.

A. M. Turing, “Chess,” in Faster than thought, B. V. Bowden, Ed. Pitman, 1953, pp. 286-295.

J. van Eeden, “Analysing and Improving the Knowledge-based Fast Evolutionary MCTS Algorithm,”
Master’s thesis, 2015.

O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani, H. Kiittler,
J. Agapiou, J. Schrittwieser et al., “Starcraft II: A New Challenge for Reinforcement Learning,” arXiv
preprint arXw:1708.04782, 2017.

M. d. Waard, D. M. Roijers, and S. C. Bakkes, “Monte Carlo Tree Search with Options for General
Video Game Playing,” in 2016 IEEE Conference on Computational Intelligence and Games (CIG).
IEEE, 2016, pp. 47-54.

K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big Data,
vol. 3, no. 1, p. 9, 2016.

14



